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Abstract 

 

The physical and hydrologic characteristics of cutover peatlands often inhibit the 

regeneration of typical peatland vegetation, particularly the keystone peat-forming genus Sphagnum, 

in the absence of active rehabilitation measures.  Peatland restoration and rehabilitation techniques 

developed over the past two decades focus on the establishment of a Sphagnum carpet on cutover 

surfaces, largely through amelioration of hydrologic conditions. More recently there has also been 

increased interest in the use of cutover peatlands as sites for producing Sphagnum biomass 

commercially on a renewable basis, as this can be substituted for the slightly decomposed peat 

currently used in the production of horticultural growing substrates.  As a result, there is interest in 

better understanding the soil water dynamics and hydrologic controls on productivity in regenerating 

Sphagnum-dominated cutover peatlands, which differ in many regards from natural peatlands.  The 

purpose of this thesis is to describe the structural evolution, hydraulic properties, and productivity 

dynamics of Sphagnum layers regenerating on cutover peat surfaces, ranging from 3-43 years in age.  

This has applications to Sphagnum biomass production as well as to understanding the longer-term 

trajectory of restored cutover peatlands. 

 The Shippagan peatland, a block-cut cutover peatland located in northeastern New 

Brunswick, has been the site of investigations into Sphagnum biomass production on cleared cutover 

surfaces since 2004.  Extensive spontaneous regeneration of Sphagnum has also occurred across 

much of the site outside the experimental areas.  For this study, plots were established in seven areas 

of the site where regeneration began at different times.  The hydrology (water table depth, 

distribution of soil moisture, evaporation, precipitation input) of each plot was monitored over the 

study season (May 24 to August 13, 2013) and gross ecosystem productivity measured frequently 

using chamber techniques.  Following the study season, multiple vertical profiles were extracted 

from each plot for laboratory determination of the hydrophysical properties (bulk density, porosity, 

saturated hydraulic conductivity, soil moisture characteristic, unsaturated hydraulic conductivity–

pressure relation) of the regenerated layers and underlying cutover peat.   

 The regenerated layers follow a pattern of evolution whereby the bulk density and retention 

capacity of the base of the profile (the ~5 cm thick layer directly overlying the cutover peat) increase 

with age as a result of decomposition and compaction.  While the amount of water that can be held 

against tension within the profile appears to increase with the age of the regenerated layer, there is a 

general trend towards decreasing near-surface (0-3 cm depth) water content for a given depth of 

water table as the thickness of the regenerated layer increases.  Near-surface water content is strongly 
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correlated (p<0.05; Pearson’s Correlation Coefficient, two-tailed test of significance) with water 

table position at all plots, while canopy retention of precipitation is poor, suggesting the 

predominance of groundwater as a water source.  The water table position remains above the former 

cutover peat surface for a substantial amount of the growing season (818% of study) at the >40 year 

old plots but not at the <10 year old plots (3025% of study).  This suggests that seasonal water table 

position may have increased over time relative to initial post-extraction conditions in the 

spontaneously regenerated areas as a result of the hydrophysical evolution of the profile.  The 

hydrologic regime in these areas may be becoming more similar to that of a natural peatland, where 

water table fluctuations are confined entirely to the acrotelm.  Productivity measurements indicate a 

broad tolerance within all study plots to observed environmental conditions, and in particular that 

insufficient supply of water does not limit productivity at the site even when the water table is >40 

cm below the surface or when no direct precipitation is received for 16 days.  Conversely, 

productivity may be frequently limited at the site by above-optimal water contents.  Based on 

analysis of productivity response to changes in near-surface water content, a volumetric water 

content range of 0.13 to 0.50 is identified as optimal for growth. 

 The spontaneously regenerated layers studied here appear to be on a trajectory of structural 

and hydrologic evolution favouring peat formation, which is encouraging for the long term prospects 

of restored cutover peatlands.  The Sphagnum species studied are tolerant to at least moderate water 

table drawdowns, though they may be less tolerant to periods of especially high water table, and 

biomass production operations using these species should take this into consideration.  The large 

predominance of capillarity as a water source, and the hydrologic connectivity between the 

regenerated layers and cutover peat, imply that control of subsurface water level is an effective 

means of optimizing hydrologic conditions for biomass production. This study is the first to 

specifically describe the ecohydrology and long term structural evolution of Sphagnum regenerating 

on cutover peat surfaces.   

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

 

I would like to thank, first and foremost, my advisor, Jonathan Price, for the opportunity to work with 

him. His mentoring and guidance over the past two years have been invaluable. 

 

I would like to acknowledge funding from Line Rochefort through the NSERC Industrial Research 

Chair in Peatland Management, as well as from Jonathan Price through the NSERC Discovery Grant. 

 

I would also like to thank Catherine Brown for her assistance with field work and general enthusiasm 

for life, Maria Strack for her advice on carbon-related matters, and the staff and students at the 

Wetland Hydrology Laboratory, most notably Colin McCarter and Jonathan Goetz, for their 

assistance with experiments and equipment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 Table of Contents 

 

Abstract .................................................................................................................................................. ii 

Acknowledgements ............................................................................................................................... iv 

Table of Contents ................................................................................................................................... v 

List of Figures ...................................................................................................................................... vii 

List of Tables ......................................................................................................................................viii 

1.0   Introduction .................................................................................................................................... 1 

1.1   Study Site: The Shippagan Peatland and Experimental Sphagnum Farming Station ................ 3 

1.2   Objectives ................................................................................................................................... 4 

1.3   General Approach ...................................................................................................................... 5 

2.0    Manuscript 1:  Soil water dynamics and hydrophysical properties of regenerating Sphagnum 

layers in a cutover peatland .................................................................................................................... 7 

2.1   Abstract ...................................................................................................................................... 7 

2.2   Introduction ................................................................................................................................ 7 

2.3   Methodology .............................................................................................................................. 9 

2.3.1  Study Area ............................................................................................................................ 9 

2.3.2  Field Data Collection.......................................................................................................... 10 

2.3.3  Laboratory Analysis ........................................................................................................... 12 

2.4   Results ...................................................................................................................................... 13 

2.4.1  Hydrophysical Properties ................................................................................................... 13 

2.4.2  Soil Water Dynamics under Field Conditions .................................................................... 19 

2.5   Discussion ................................................................................................................................ 22 

2.6 Conclusion.................................................................................................................................. 27 

3.0   Manuscript 2:  Hydrologic controls on productivity of regenerating Sphagnum in a cutover 

peatland ................................................................................................................................................ 29 

3.1   Abstract .................................................................................................................................... 29 

3.2   Introduction .............................................................................................................................. 29 

3.3   Methodology ............................................................................................................................ 31 

3.3.1  Study Site ........................................................................................................................... 31 

3.3.2  CO2 Flux Measurements ..................................................................................................... 33 

3.3.3   Hydrologic Measurements ................................................................................................ 34 



vi 
 

3.3.4   GEP Modeling and Statistical Analysis ............................................................................ 35 

3.4   Results ...................................................................................................................................... 36 

3.4.1  Field Data ........................................................................................................................... 36 

3.4.2  GEP Model ......................................................................................................................... 40 

3.5 Discussion .................................................................................................................................. 41 

3.5.1  Moisture and Temperature Controls on GEP ..................................................................... 41 

3.5.2  Role of Profile Age and Species Composition ................................................................... 43 

3.5.3   Modeled GEP and Estimation of Optimal Water Content ................................................ 45 

3.6   Conclusion................................................................................................................................ 47 

4.0   Conclusion and Implications ........................................................................................................ 49 

Appendix: WET-Sensor Calibration and Lysimeter Data ................................................................... 52 

WET-Sensor Calibration .................................................................................................................. 52 

Lysimeter Data and Priestley-Taylor Evaporation Coefficient Estimates ....................................... 54 

References ............................................................................................................................................ 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Figures 

 

 

Figure 2-1:  Bulk density profiles.........................................................................................................15 

Figure 2-2: Water retention curves for Sphagnum and cutover peat samples.....................................16 

Figure 2-3: Relationship between bulk density and water retention of samples.................................17 

Figure 2-4: Unsaturated hydraulic conductivity of samples under tension.........................................18 

Figure 2-5: Water table position versus profile volumetric water content in the 0-3 cm layer...........20 

Figure 2-6: Time series of soil moisture distribution, water table depth, and precipitation................21 

Figure 2-7: Water table position versus volumetric water content at 2.5 cm TDR probe depth.........22 

Figure 2-8: Exceedance probability of water table positions relative to cutover peat interface..........26 

Figure 3-1: Relative species abundance and capitulum density of Sphagnum within collars.............37 

Figure 3-2: Box plots showing seasonal distribution of values for four environmental variables......38 

Figure 3-3: GEP relative to near-surface volumetric water content and canopy temperature.............39 

Figure 3-4: WET-sensor 0-3 cm layer water content versus capitulum wet : dry mass ratio..............43 

Figure 3-5: Water table position versus profile volumetric water content in the 0-3 cm layer...........45 

Figure 3-6: Modeled GEP values versus measured near-surface water content..................................47 

Figure A-1: WET-sensor calibration set-up.........................................................................................53 

Figure A-2: WET-sensor calibration curves for 0-6 cm and 0-3 cm layers.........................................53 

Figure A-3: Relationships between equilibrium ET and actual ET by plot.........................................55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-1:   Relative species abundance and capitulum density of Sphagnum within collars................14 

Table 3-1: F-statistics, p-values, and degrees of freedom of the fixed effects used to model GEP.....40 

  

  

  

  

  

  

  

  

  

  

  

  



ix 
 

Note:  Chapters 2 and 3 of this thesis are written as independent manuscripts to be submitted for 

publication.  As a result, some of the text within the manuscripts repeats information stated elsewhere 

within the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1.0   Introduction 

 Canadian peatlands cover an extensive area, estimated at 113 million hectares or roughly 11 

percent of the total Canadian landmass, and comprise more than three quarters of all wetlands in 

Canada by area (Daigle & Gautreau-Daigle, 2001).  The accumulation of organic matter as peat is the 

defining feature of these ecosystems, and is made possible by low rates of decomposition resulting 

from perennially inundated soils and recalcitrant plant material (Clymo & Hayward, 1982; Clymo, 

1984; Rydin & Jeglum, 2009).  Of great importance in many types of peatland is the genus 

Sphagnum, which often dominates the landscape in the climax stage of ecological succession owing 

to its ability to create an environment wherein it can outcompete other plants (Clymo & Hayward, 

1982; Kilham, 1982; van Breeman, 1995; Rochefort, 2000).  As a result, plant material from 

Sphagnum constitutes a large proportion of Canadian and global peat stocks (Loisel et al., 2014) and 

it has been suggested that more carbon is stored in dead and living Sphagnum tissue than in any other 

genus of plant (Clymo & Hayward, 1982).   

Sphagnum peat is valued for its unique water retention properties, high cation exchange 

capacity, and sterility, qualities which make it an excellent growing medium for potted plants (Silvan 

et al., 2012). Though peat is often used as biofuel in other parts of the world, the vast majority of 

Canadian Sphagnum peat is extracted for use in horticultural products (Cleary et al., 2005).  The 

horticultural peat industry is significant in some regions of Canada, notably eastern New Brunswick 

and the Bas-St-Laurent region of Quebec, generating an estimated $260 million in annual revenue 

(Natural Resources Canada, 2014).  Peat extraction involves the ditching and drainage of sites, the 

removal of the surface layers of vegetation, and collection of the upper layers of peat.  Prior to the 

1970s peat was extracted predominantly by hand using traditional block-cut methods.  The resulting 

landscape was one of dug trenches separated by raised baulks where peat blocks were stacked to dry.   

Since this time, vacuum-extraction techniques employing heavy machinery and necessitating deeper 

drainage have become the industry standard (Lavoie & Rochefort, 1996; Poulin et al., 2005), 

although a large number of abandoned block-cut sites still exist (Lavoie et al., 2003).   

Peat extraction operations alter the physical and hydrologic conditions at cutover sites with 

respect to their former state.  In natural peatlands, plants grow on layers of their own dead remains 

that become progressively more decomposed with depth (Clymo & Hayward, 1982; Hayward & 

Clymo, 1982; Clymo, 1984), creating a corresponding gradient in the hydraulic properties 

influencing water storage and transmission (Boelter, 1968).  In cutover peatlands, the exposure of 

more highly decomposed peat at the surface results in lower and more variable water tables 

(Schouwenaars, 1993; Price, 1996) and lowered soil water pressures (Price, 1996, 1997; Price & 
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Whitehead, 2001) as a consequence of the greater abundance of smaller pore sizes and corresponding 

lower specific yield in cutover peat (Price, 1996, 1997, 2003).  The combination of these factors 

often inhibits the regeneration of non-vascular Sphagnum mosses and other peatland species in the 

absence of active rehabilitation measures (Lavoie & Rochefort, 1996; Price, 1996).  While 

spontaneous regeneration of Sphagnum is generally very poor in vacuum-extracted peatlands (Lavoie 

et al., 2003; Price et al., 2003; Poulin et al., 2005) the greater abundance of suitably wet 

microtopography, larger viable seed banks, and less extensive drainage of block-cut peatlands make 

spontaneous regeneration relatively more common in these environments (Price et al., 2003; Poulin 

et al., 2005; Triisberg et al., 2011).  Nonetheless, large areas of block-cut peatlands can remain 

devoid of Sphagnum decades after abandonment (Van Seters & Price, 2002; Poulin et al., 2005). 

Although much less than one percent of Canadian peatlands have been affected by peat 

extraction (Daigle & Gautreau-Daigle, 2001), cumulative losses in areas like the Bas-St-Laurent have 

been estimated to be in excess of 70 percent (Laframboise, 1987), and in combination with other land 

use pressures on peatlands extraction operations can constitute a threat to regional biodiversity 

(Poulin et al., 1999; Daigle & Gautreau-Daigle, 2001).  Additionally, abandoned cutover peatlands 

tend to become large and persistent sources of atmospheric CO2 due to vegetation removal and the 

oxidation of cutover peat (Waddington & Price, 2000; Waddington et al., 2002; Petrone et al., 2003). 

In response to these concerns, methods have been developed over the past 20 years for restoring 

cutover sites to functioning, peat-accumulating ecosystems dominated by Sphagnum mosses (Ferland 

& Rochefort, 1997; Rochefort et al., 2003).  The main components of the North American method to 

peatland restoration (Rochefort et al., 2003; Quinty & Rochefort, 2003) are as follows: clearing and 

leveling of cutover surfaces to bare peat, landscaping of surfaces as necessary to increase on-site 

retention of water, collection of viable  Sphagnum diaspores from a donor site, distribution of 

diaspores across the cutover surface at a 1:10 (donor site: restoration site) areal ratio, covering with 

straw mulch to improve microclimatic conditions at the surface, and phosphorus fertilization. The 

creation of a Sphagnum carpet on cutover surfaces is seen as imperative both from an ecological and 

a long-term carbon sequestration perspective to the successful restoration of a site (Ferland & 

Rochefort, 1997; Rochefort, 2000; Rochefort et al., 2003; Waddington et al.,  2010).  

The majority of the restoration techniques in the North American method focus on the 

creation of favourable hydrologic conditions for Sphagnum regeneration as Sphagnum is 

poikilohydric, lacking physiological mechanisms to control water loss such as stomata (Proctor, 

1982; Titus & Wagner, 1984). Water supply to the capitulum, the uppermost ~1.5 cm of the plant 

where most growth occurs, is primarily via external capillary flow between pendant leaves along the 
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outside of the stems (Clymo & Hayward, 1982; Proctor, 1982). The water content in the capitula is 

the most important control on photosynthesis under non-light-limiting conditions (Busby & 

Whitfield, 1978; Dilks & Proctor, 1979; Schipperges & Rydin, 1998).  If upwards flows cannot 

balance evaporative demand and the soil water pressure becomes too low at the surface, hyaline cells 

providing structural support to chlorophyllose cells will drain (Clymo & Hayward, 1982; Lewis, 

1988) and photosynthesis will be drastically reduced (Gerdol et al., 1996; McNeil & Waddington, 

2003).  Photosynthesis can also be reduced by an overabundance of water if the film covering leaves 

is thick enough to reduce CO2 diffusion rates (Dilks & Proctor, 1979; Williams & Flanagan, 1998).  

Due to the reliance on passive water transport and the importance of water content in regulating 

photosynthesis, establishing a hydrologic regime to support the development of a Sphagnum layer is 

critical to the success of restoration efforts.   

While peatland restoration has been adopted widely as a management practice by the 

Canadian horticultural peat industry (e.g. Canadian Sphagnum Peat Moss Association, 2005) and as 

policy by provincial regulatory bodies (e.g. New Brunswick Department of Natural Resources, 

2014), there has been increased interest over the past decade in using cutover sites as locations for 

producing Sphagnum fibre on a commercial scale (Campeau & Rochefort, 2002).  Fresh dried 

Sphagnum biomass can be substituted for the slightly decomposed “white peat” currently used by the 

industry in the production of growing substrates without losses in crop yield (Emmel, 2008). 

Producing Sphagnum biomass in this manner would reduce or eliminate the need to exploit new areas 

for horticultural peat production, and is thus seen as a more sustainable and climate-friendly 

alternative to conventional peat production (Boon & Verhagen, 2008; Silvan et al., 2012).  However, 

research into Sphagnum biomass production is still at a relatively early stage and many questions 

remain about the most efficient methods of production, the optimal timescale for production cycles, 

and the constraints on biomass yields. 

 

1.1   Study Site: The Shippagan Peatland and Experimental Sphagnum Farming Station 

 The Shippagan peatland is located just south of the town of Shippagan, New Brunswick on 

the Acadian Peninsula (47°40’N, 64°43’W).  Mean annual air temperature in Shippagan is 4.8°C and 

mean annual precipitation is 1077 mm, of which 69 percent falls as rain (Environment Canada, 

2014). Approximately 140 ha of the site was mined using block-cutting methods over the mid-

twentieth century, and the site was abandoned following the end of operations circa 1970 (Robert et 

al., 1999).  The trenches at the site are approximately 18 m wide with 0.6 – 1 m of residual peat, and 
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are separated by 5 m wide baulks that are ~1 m higher in elevation than trenches (Robert et al., 

1999).  Spontaneous revegetation of extracted areas is extensive, with Sphagnum species occurring 

within a large majority of the trench area but mostly absent from baulks.  The site appears to be 

exceptional in the extent of Sphagnum regeneration with respect to other block-cut peatlands in 

eastern North America, where spatial coverage of regenerated areas in trenches is typically less than 

30 percent (Poulin et al., 2005). It should be noted, however, that many of these peatlands are located 

in more continental climatic regions than the Shippagan peatland.  Vascular species, mainly 

ericaceous shrubs and Eriophorum spp. have recolonized the baulks and many areas of the trenches 

at the Shippagan peatland (Robert et al., 1999).  

 The Shippagan peatland was selected by the Peatland Ecology Research Group (PERG) and 

its partners in industry as a site for research into Sphagnum biomass production under the Natural 

Sciences and Engineering Research Council (NSERC) Industrial Research Chair in Peatland 

Management program, which began in 2003 and has since been renewed twice, in 2008 and 2013.  

The goal of this research is to investigate large scale Sphagnum fibre production methods to supply 

material for renewable commercial growing substrate production as well as donor material for future 

peatland restoration projects (Pouliot et al., 2014).  The existing shallow basins at the site minimized 

the amount of resurfacing work required, and there was an abundance of potential donor material 

within the undisturbed and spontaneously regenerated areas of the peatland (Landry & Rochefort, 

2009).  Two areas within the peatland were selected as experimental basins, where trenches 

measuring approximately 15 × 90 m were cleared down to bare peat and seeded with Sphagnum 

diaspores following the standard North American approach in the spring of each year, beginning in 

2004 (Landry & Rochefort, 2009).  Additional production cycles were started in 2006, 2008, 2010, 

2011, and 2012.   

 

1.2   Objectives 

While the hydrology of cutover peatlands has been the subject of a number of investigations, 

there is scant research on the development of regenerated Sphagnum layers in such environments and 

how the water storage and transmission properties of these layers evolve over time.  Some authors 

(Schouwenaars & Gosen, 2007; McCarter & Price, 2014) have suggested that the regenerated layer 

quickly becomes vulnerable to water stress as it grows above the cutover surface owing mainly to 

low unsaturated hydraulic conductivity. McCarter and Price (2014) reported poor hydraulic 

connectivity between cutover peat and regenerating Sphagnum and proposed that in order for the 

regenerating layer to access more of the water stored in the underlying peat, the base of the profile 
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requires sufficient time for decomposition so that the discontinuity in hydrophysical properties is 

substantially reduced.  However, the timescale over which this process might occur is unknown.  

Furthermore, no studies to date have linked the hydrology of regenerating Sphagnum in cutover 

environments to measurements of productivity on a sub-seasonal timescale, and consequently the 

optimal hydrologic conditions for Sphagnum biomass production and restoration projects remain 

uncertain.  Therefore, the objectives of this research are as follows:  

 

1. To characterize and compare the physical structure and hydraulic properties of regenerated 

Sphagnum and remnant cutover peat in regenerated areas ranging in age from 3-43 years and 

from 3-40 cm in thickness 

2. To determine how the regenerated layers function hydrologically under field conditions 

and what controls the water content at the surface 

3. To determine how soil water dynamics and surface water content relate to the productivity 

of the regenerated layers 

 

1.3   General Approach 

 This thesis consists of two separate but related manuscripts on the subject of the 

hydrophysical properties, hydrologic behaviour, and productivity dynamics of Sphagnum at different 

stages of regeneration on cutover peat surfaces.  I was primarily responsible for the design, 

implementation and execution of field work and laboratory experiments, as well as the writing of 

both manuscripts.  The first manuscript (Soil water dynamics and hydrophysical properties of 

regenerating Sphagnum layers in a cutover peatland) summarizes the hydrophysical properties (bulk 

density, porosity, saturated hydraulic conductivity, water retention curves, and unsaturated hydraulic 

conductivity–pressure relations) and hydrologic behaviour of seven regenerated Sphagnum layers of 

differing ages and thicknesses located in different areas of the Shippagan peatland.  Intensive field 

observations of soil water dynamics in regenerated layers are presented in combination with 

laboratory-determined hydrophysical parameters to help explain the structural evolution of the layers 

and the consequent changes in the observed hydrologic response to varying environmental 

conditions.  The second manuscript (Hydrologic controls on productivity of regenerating Sphagnum 

in a cutover peatland) links the instantaneous hydrologic conditions observed in the field to the 

productivity as determined using chamber techniques.  Optimal hydrologic conditions for growth are 

estimated by isolating the effect of water content in the uppermost (0-3 cm) layer on variance in 

gross ecosystem productivity from the effects of other measured variables using a mixed linear 
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modeling approach.  Together, these two manuscripts represent the first comprehensive description 

of the structural evolution and ecohydrology of a regenerating Sphagnum-dominated cutover 

peatland.  
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2.0    Manuscript 1:  Soil water dynamics and hydrophysical properties of 

regenerating Sphagnum layers in a cutover peatland 

 

2.1   Abstract 

The physical and hydrologic conditions in cutover peatlands often act as barriers to the 

regeneration of the keystone peat-forming genus Sphagnum.  Although previous work has suggested 

that Sphagnum mosses regenerating on cutover peat surfaces quickly become vulnerable to water 

stress as the thickness of the regenerated layer increases, uncertainties regarding the storage and 

transmission properties of this layer and how these might evolve over time have made this assertion 

difficult to evaluate.  This study investigates the hydrophysical properties and hydrologic behaviour 

of regenerating Sphagnum layers ranging from 3-43 years in age using both field and laboratory 

methods.  The regenerated layers follow a pattern of structural evolution whereby the bulk density 

and retention capacity of the basal layers directly overlying the cutover peat increase over time.  

Capillarity was a much stronger control on surficial water content (θ) than precipitation, which was 

poorly retained in the Sphagnum canopy, suggesting that regulation of water table position is an 

effective method of controlling θ as a means of optimizing productivity.   In general, the θ sustained 

at a given water table position decreased as layer thickness increased, although this was not always 

the case.   Analysis of water table position relative to the former cutover peat surface suggests that 

seasonal water table position may have increased at older (>40 year old) areas of the site relative to 

initial conditions, and that the hydrologic regime may be becoming increasingly similar to that of a 

natural bog peatland. 

 

2.2   Introduction 

The exploitation of bog peatlands for Sphagnum peat is an important industry in certain 

regions of Canada, generating an estimated $260 million dollars in annual revenue (Natural 

Resources Canada, 2014).  Sphagnum peat is valued for its high water retention capacity among other 

properties, and is used within Canada primarily by the horticulture industry as a growing substrate 

(Cleary et al., 2005).  Peat extraction involves site drainage via ditching, the removal of surface 

vegetation, and extraction of the upper layers of peat.  Prior to the 1970s, most peat was extracted by 

hand using traditional block-cutting methods, resulting in a landscape of wide, shallow extraction 

trenches separated by narrower baulks on which peat blocks were placed to dry.  While this method 

is no longer used, a large number of abandoned block cut sites still exist (Lavoie et al., 2003).  

Modern peat extraction operations are mechanized, utilizing specialized machinery to cut and 
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vacuum peat from the surface.  This method requires a deeper and more extensive drainage network 

and cambering of surfaces to allow heavy machinery to be used on site.  In both methods, the 

prevailing physical and hydrologic conditions following extraction deter natural regeneration of the 

keystone peat-forming genus Sphagnum in most cases without active restoration (Lavoie & 

Rochefort, 1996; Price, 1996; Poulin et al., 2005).   

The need to address peatland losses in regions of intense extraction activity led to the 

development in the 1990s of methods for restoring abandoned sites to functional, carbon-

accumulating ecosystems dominated by Sphagnum mosses (Ferland & Rochefort, 1997; Rochefort, 

2000; Rochefort et al., 2003).  More recently, research has also focused on the potential of cutover 

peatlands as sites for growing Sphagnum biomass in order to meet the demand for horticultural 

substrate without exploiting new areas (Gaudig & Joosten, 2002; Gaudig, 2012; Pouliot et al., 2014).  

Sphagnum biomass has been found to be a suitable or even a superior growing media substitute for 

“white peat”, the slightly decomposed Sphagnum peat currently used by the industry, and is 

considered a sustainable alternative (Emmel, 2008; Silvan et al., 2012). 

The ability of non-vascular Sphagnum mosses to survive desiccation and photosynthesize 

depends on their ability to maintain adequate moisture content at the capitula (Clymo & Hayward, 

1982; McNeil & Waddington, 2003), a cluster of leaves and branches comprising the uppermost part 

of the plant.  This, in turn, is controlled primarily by capillary flow through the underlying layers of 

peat and moss (Clymo & Hayward, 1982), with the vast majority of flow occurring between 

overlapping pendant branches and leaves along the outside of the stem (Proctor, 1982).  Hyaline cells 

within the leaves hold water critical for structural support and the maintenance of photosynthetic 

processes (Clymo & Hayward, 1982).  At soil water pressures between -200 and -600 cm, these cells 

will drain (Clymo & Hayward, 1982; Lewis, 1988) and photosynthesis will essentially cease (Gerdol 

et al., 1996).  In natural peatlands the living mosses grow on layers of dead remains that become 

progressively more decomposed with depth (Clymo & Hayward, 1982; Hayward & Clymo, 1982; 

Clymo, 1984), creating a corresponding gradient in the hydraulic properties influencing the storage 

and transmission of water.  By comparison, the hydrophysical properties of highly decomposed 

cutover peat can present a hostile environment for Sphagnum regeneration.  Reduced specific yield in 

cutover peat relative to natural peatland surfaces can lead to low and highly variable water tables 

below cutover surfaces (Schouwenaars, 1993; Price, 1996).  Furthermore, soil water pressures in 

cutover peat may be below the threshold at which the capillary forces generated by the mosses can 

extract enough water to offset evaporative losses, preventing recolonization of cutover surfaces 

(Price & Whitehead, 2001).  
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It has been suggested by some authors that Sphagnum is at increasing risk of water stress as it 

grows higher above the cutover surface due to low unsaturated hydraulic conductivity of the 

regenerated layers limiting upwards water fluxes (Schouwenaars & Gosen, 2007; McCarter & Price, 

2014).  While some studies have examined the hydrological processes operating within Sphagnum 

hummocks (eg. Yazaki et al., 2006; Price & Whittington, 2010), only a couple  (McCarter & Price, 

2014; Ketcheson & Price, 2014) have looked specifically at processes occurring in the context of 

regenerating cutover peatlands.  The evolution of regenerating Sphagnum profiles also has not been 

well studied, and it is unknown how the water storage and transmission properties may change over 

time.  This presents a barrier to creating optimal hydrologic conditions in bog restoration and 

Sphagnum biomass production operations.  An improved understanding of the soil water dynamics of 

regenerating Sphagnum in cutover peatlands is therefore desirable.  The specific objectives of this 

paper are: 1) to demonstrate differences in physical and hydraulic properties of Sphagnum profiles at 

different stages of regeneration; 2) to use differences in properties determined in the laboratory to 

explain the soil water dynamics within the profiles observed under field conditions, and; 3) to discuss 

potential implications for water management. 

 

2.3   Methodology 

2.3.1  Study Area 

Data was collected in a large abandoned cutover peatland located just south of Shippagan, 

New Brunswick (47°40’N, 64°43’W). Mean annual air temperature in Shippagan is 4.8°C and mean 

annual precipitation is 1077 mm, of which 69% falls as rain (Environment Canada, 2014). The site 

was mined using traditional block-cut methods and consequently is characterized by an alternating 

baulk and trench structure.  Trenches ~18 m wide are separated by ~5 m wide and ~1 m high baulks, 

with residual peat depths ranging from 0.6 – 1 m in the trenches (Robert et al., 1999). The site was 

abandoned following the end of extraction operations in 1970.  In the trenches, but not the baulks, 

spontaneous regeneration of Sphagnum has occurred across most of the site.  In this regard the site 

differs from many other abandoned block-cut peatlands in eastern North America (Poulin et al., 

2005) primarily at more continental locations (Gonzalez et al., 2013).  Natural Sphagnum 

regeneration has been found to be more common at block-cut than at vacuum-extracted sites as the 

landscape of block-cut peatlands offers a greater variety of microtopographic habitats (Price et al., 

2003; Triisberg et al., 2011), although regeneration is generally limited to the wettest parts of the site  

(Price & Whitehead, 2001).  Two sections of the site have been cleared and divided into plots for 

Sphagnum biomass production experiments dating from 2003 (Landry & Rochefort, 2009).  
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2.3.2  Field Data Collection 

Seven plots were established in different areas of the study site for hydrological monitoring 

and hydrophysical analysis.  Three of these plots were in the spontaneously revegetated area of the 

site, assumed to have begun regeneration at the time of abandonment (plots 1970-A, 1970-B, and 

1970-C), and are collectively referred to here as SPONT.  These had well-developed Sphagnum 

profiles (hereafter referred to simply as “profiles”) ranging from 23 – 40 cm in height above the 

former cutover peat surface.  The other four plots were located within trenches where Sphagnum has 

regenerated on cleared cutover surfaces, having been artificially introduced for biomass production 

experiments over the period 2003 – 2012 (Landry & Rochefort, 2009).  These plots had profile 

heights of 3 – 17 cm (plots 2004, 2006, 2008 and 2010), and are collectively referred to as EXPER.  

Plot names denote the year in which regeneration began or was assumed to have begun.  Each plot 

consisted of three replicate sub-plots in close proximity and of apparent homogeneity in structure and 

species composition.  Sub-plots were delineated by metal collars inserted into the profile to a depth 

of 40 cm, which were also used to measure productivity in a concurrent study not discussed in this 

paper.  All sub-plots were flat and completely covered by regenerating Sphagnum.  Most areas were 

characterized by a mix of Sphagnum species within section Acutifolia (S. fuscum (Schimp.) Klinggr., 

S. rubellum Wils., S. flavicomans (Sect. Acutifolia)), with significant presence of S. magellanicum 

Brid. at many locations.  Nomenclature for Sphagnum species follows that of Anderson (1990).  The 

relative proportion of species present within each sub-plot was estimated visually, while capitula 

density was estimated by counting the number of individuals within a 2 cm square quadrant of 

transparent graphing paper at 16 randomly selected locations within each plot (Table 2-1).   At 

locations where ericaceous shrubs or grasses were present within the sub-plots, the above-ground 

portion of the plant was clipped and replaced with cuttings of ericaceous branches or grass leaves, as 

appropriate, so as to maintain similar surface shading and to restrict latent energy exchanges to the 

moss surface.  Cuttings were changed regularly and were removed from the surface during 

measurements.  A system of boardwalks was constructed to prevent disturbance of Sphagnum 

profiles during measurements. 

Each plot was instrumented with a well containing a pressure transducer to record water table 

position (WT), and weighing lysimeters were used in conjunction with data from a meteorological 

station to estimate evaporation using the Priestley-Taylor method (Priestley & Taylor, 1972) 

following the approach outlined in Van Seters and Price (2001).  Two raingauges, one manual and 

one automated, recorded precipitation input at the site. A portable WET-Sensor™ (Delta-T Devices, 

Cambridge, UK) time-domain reflectometry (TDR) device was used to measure the volumetric 
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moisture content () at the growing surface  of each plot.  During each measurement, θ was sampled 

at five locations within each sub-plot and averaged across the three sub-plots to obtain a plot-scale θ 

value for this layer.  Two measurements were taken at each sampling location, one with the 6 cm 

long probes inserted vertically to full depth and the other with the probes inserted down to a line 

drawn at half the probe length in order to generate θ values for both the 0-6 cm and 0-3 cm depth 

layers.  TDR calibration curves for individual plots were developed using gravimetrically-determined 

θ and TDR-derived readings taken from Sphagnum samples of known volume as they dried, 

following the method of Topp et al. (1980).  Separate calibrations were performed for the 0-6 cm 

layer and 0-3 cm layer measurements at each plot to account for differences resulting from the partial 

exposure of the probes to air.  Plot- and layer-specific calibration curves were then applied to all 

readings from the WET-Sensor™.   

Three plots (2006, 2010, and 1970-C), taken to be representative of three different stages of 

regeneration, were fully instrumented with CS605 TDR probes (Campbell Scientific Canada Corp., 

Edmonton, Alberta) and tensiometers to quantify the moisture regime within and below the 

regenerated profile.  TDR probes were inserted horizontally at regular depth intervals in the 

Sphagnum profile and cutover peat of each sub-plot and connected to dataloggers (Model CR1000, 

Campbell Scientific Canada Corp.) to record  of discrete soil layers at 30 minute intervals.  

Tensiometers were installed in the cutover peat only, as poor contact between the less-decomposed 

moss and the ceramic cups prevented direct measurement of the soil water pressure in the 

regenerated layer.  Probe depths within the profile are given relative to the growing surface, with 

positive numbers denoting the depth below the surface. Depths for probes located within the peat are 

given relative to the top of the cutover peat layer, with negative numbers denoting the depth below 

the cutover peat.  For probes located within the peat, positive numbers in parentheses denote the 

depth relative to the growing surface. 

Direct precipitation was experimentally excluded from all plots during the 16 day period 

between July 28 and August 13, 2013, to evaluate the effect of the removal of this water source on 

surface moisture dynamics.  This was accomplished using clear plastic sheets tented over the collars 

at each plot and attached to posts inserted into the peat.  Plastic sheets were removed during 

measurements of θ and other parameters, and were high enough above the collars (~70 cm at the tent 

peak) so that air temperature and surface shading would not be significantly altered. 

Profiles at each plot were sampled for hydrophysical analysis using PVC rings 10 cm in 

diameter and 5 cm in height.  After carefully cutting around the outside of the rings with scissors, the 
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rings could easily slide down around a sample at a targeted depth.  Samples were removed by cutting 

along the bottom of the ring.  This system permitted the preservation of the in-situ structure of the 

moss and partially decomposed plant matter during transport and laboratory analysis.  Full profiles of 

the regenerated Sphagnum layer and the top layer of cutover peat were sampled from each sub-plot in 

5 cm increments at the end of the study season, for a total of 3 full profiles per plot.  Additional 5 cm 

samples were taken from the surface layer of each plot, from which the top 2 cm (roughly the 

capitula) were later removed so that they could be analyzed as a distinct layer.  This was 

accomplished by spraying samples with water and freezing to provide the necessary structural 

stability before cutting with a fine-toothed saw. 

 

2.3.3  Laboratory Analysis 

The vertical saturated hydraulic conductivity (Ksat), soil water pressure (ψ) – retention curve, 

unsaturated hydraulic conductivity – ψ (Kψ) curve, bulk density, and porosity of each profile sample 

was determined in the laboratory.  All water used in these analyses was filtered by a reverse osmosis 

system.  Ksat was measured using a Darcy permeameter.  All samples were wrapped in plaster and 

sealed with paraffin wax around the sides before being placed in the permeameter so as to leave open 

a flow face on the top and bottom and eliminate preferential flow around the sides while preserving 

the structural integrity of the sample (Hoag & Price, 1997).  Darcy’s Law was used to calculate 

sample Ksat from the rate of discharge across a known hydraulic gradient and flow face area.  Bulk 

density was determined by oven-drying samples at 80°C until they reached a stable mass.  Porosity 

was estimated by placing ground soil samples of known mass in a known volume of kerosene to find 

the particle density by displacement, then calculating porosity as (1 − 
particle density

bulk density
) following the 

liquid pycnometer method outlined by Blake and Hartge (1986).   

The ψ – retention and Kψ curves were determined following the method of Price et al. (2008) 

at ψ of -3, -6, -12, -20, and -30 cm.  Two samples from select depth intervals (0-2 cm capitulum 

layer, 0-5 cm, 5-10 cm, profile base, top 5 cm of cutover peat) at each plot were chosen for analysis, 

as equipment and time constrictions limited the number of samples that could be run simultaneously.  

Briefly, samples were placed on tension plates covered with 25 m pore size NitexTM mesh which 

were connected to an Erlenmeyer flask beneath.  This arrangement allowed the ψ of samples to be 

controlled by manipulating the height of the flask outlet below the tension surface, effectively 

creating a hanging column of water beneath the plate.  A constant head was maintained within the 

flask by manually replacing water lost to overflow or evaporation.  The flask outlet height was set 
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relative to the midpoint of the sample to achieve the desired average value of ψ within the sample.  

Samples were weighed daily and allowed to equilibrate at a given ψ until masses stabilized (<1 

g·day-1 change), at which point θ for that ψ was determined gravimetrically.   Kψ was measured once 

all samples had equilibrated to a given ψ.  Kψ measurements used a second NitexTM-covered tension 

disc placed on top of the sample, connected to a reservoir which was maintained at a constant head 

value equivalent to the equilibrated ψ at the top of the sample.  The beaker outlet was then lowered 

by half the height of the sample, maintaining the same average ψ within the sample and inducing a 

constant discharge at a hydraulic gradient of 1.  After equilibrating for an hour, the rate of discharge 

was measured to determine Kψ using Darcy’s Law.  All discharge measurements retained for analysis 

had r2>0.9. 

The time intensity of the methods involved limited the number of samples that could be 

processed, preventing a rigorous statistical comparison of hydrophysical parameters between 

different plots.  Properties of the profiles are therefore compared descriptively in the discussion. 

 

2.4   Results 

2.4.1  Hydrophysical Properties 

The bulk density of all profiles increased with depth below the surface (Figure 2-1).  Both 

SPONT and EXPER had similar bulk densities in the top 5 cm (average 0.0210.005 and 

0.0180.005 g·cm-3, respectively).  However, SPONT had notably greater bulk densities in the 5 cm 

layer directly overlying the cutover peat (average 0.0610.013 g·cm-3) compared to EXPER (average 

0.0260.009 g·cm-3).  Peat samples had the highest average bulk density at 0.0730.012 g·cm-3. 

The ψ – θ relation for all tested depth intervals is shown in Figure 2-2.  Water retention 

capacity for ψ<0 was generally higher in the basal layer than in overlying layers, although the 

capitulum (0-2 cm) layer had a higher retention capacity than the 0-5 cm and 5-10 cm depths at most 

plots.  The capitulum layer at EXPER plots 2008 and 2010 had markedly higher retention capacity 

than most other plots, but approached comparable values of θ at ψ=-30 cm.  Retention at ψ=-30 cm, 

the lowest measured pressure, was substantially higher in the basal layer at SPONT (average 

0.660.10) when compared to the same layer at EXPER (average 0.400.09), and both groups had 

higher retention in the basal layer relative to the surface (0-5 cm) layer (Figure 2-2, bottom right).  

The difference between SPONT and EXPER was negligible in the surface (0-5 cm and 5-10 cm) 

layers, with the exception of plot 1970-C, which had much higher θ than other plots across the 

measured range of ψ.  
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Bulk density was found to be positively correlated with water retention capacity of samples at 

ψ<0 (Figure 2-3).  The relationship between these parameters was best approximated by a linear 

function at ψ=-30 cm and by a semi-logarithmic function at all higher ψ.  After scaled log 

transformation of θ for the aforementioned ψ values, r2 of the bulk density – θ relationship was >0.77 

across the range of ψ tested.  Peat samples showed much less variation in the slope of the bulk 

density – retention curve throughout this ψ range than did Sphagnum samples. 

The Ksat and porosity of samples showed less distinct patterns of variation with depth.  Ksat 

was lower in the basal layer than at the top of the profile at all plots, although there was substantial 

variability at most depth intervals.  Values for Sphagnum samples ranged from 6.6  10-5 to 1.5  10-

3 m·s-1 while peat samples had values about an order of magnitude lower (average 1.0  10-4 m·s-1) 

than surficial Sphagnum samples.  Ksat was weakly negatively correlated with bulk density (r2=0.53).  

Porosity for all samples was very high, ranging from 0.91 to 0.99, and tended to decrease with depth.  

Peat samples had a slightly lower average porosity (0.930.01) than Sphagnum samples (average 

0.970.02).   

Kψ curves for all tested samples are shown in Figure 2-4.  Kψ dropped by an average of four 

orders of magnitude between ψ=0 cm (saturation) and ψ=-30 cm.  Despite there being differences 

between samples in other properties, samples tended to follow a similar relationship between ψ and 

Kψ, with about one and a half orders of magnitude variability between all samples at any given ψ.  

The implications of this are explored further in the discussion section.    

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-1:  The relative proportion of Sphagnum species present within the collars at 

each plot, shown as an average across the three collars.  Values are rounded to two 

digits and may not add exactly to one.  Spatial densities of capitula are also shown SD. 
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Figure 2-1:  Bulk density depth profiles of regenerated Sphagnum profiles 

(“Sphagnum”) and the upper 5 cm of remnant cutover peat for all sites (n=3 for each 

point).  Sampling of cutover peat samples at site 1970-A was prevented by high water 

table during sampling period. Error bars show SD.    
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Figure 2-2:  Retention curves for samples taken from different profile depth intervals 

at each site (n=2 for all points except cutover peat values, where n=1).  Data for 

SPONT is shown at left, EXPER in the center column, and cutover peat for all sites at 

right.  The bottom right panel shows group average retention curves for EXPER and 

SPONT.  The profile base refers to the 5 cm layer directly overlying the former cutover 

peat surface at each site. Values for ψ=0 were derived from sample porosity. Solid 

lines and dotted lines indicate retention curves during lowering and raising of soil 

water pressure, respectively.  Error bars show SD in θ 
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Figure 2-3:  Relationship between bulk density and volumetric water content at 

tension for all samples.  Water contents at two tension levels are shown here as typical 

examples of this relationship.  Samples tended to follow a linear relationship at ψ=-30 

cm and semi-logarithmic relationship at all other measured ψ. 
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Figure 2-4:  Unsaturated hydraulic conductivity (K) for samples under soil water 

pressures in the range of 0 to -30 cm (n=2 for all points except cutover peat values, 

where n=1).  Data for SPONT is shown at left, EXPER in the center column and 

cutover peat for all plots at right. The profile base refers to the 5 cm layer directly 

overlying the former cutover peat surface at each site.  K values for =0 are 

determined from the saturated hydraulic conductivity measured in a Darcy 

permeameter.  Error bars represent SD in K . 
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2.4.2  Soil Water Dynamics under Field Conditions 

The study period was characterized by higher than average seasonal precipitation, receiving 

227 mm more than would be expected from the 30-year (1981-2010) mean for the 82 day period 

between May 24 and August 13 (Environment Canada, 2014).  More than two-thirds of seasonal 

precipitation was received in 5 events >30 mm in size, and nearly a quarter was from a single 100 

mm event on July 26-27.  Precipitation was estimated to exceed evaporation by >110 mm at all plots.  

Soil water pressures measured by tensiometers set in the cutover peat at plots 2006 and 2010 

remained above -15 cm for the entire study season, and WT fluctuations were mostly constrained to 

within 40 cm of the surface. 

Plots exhibited very different responses to WT in θ at the surface (0-3 cm) layer (Figure 2-5).  

This is evident from the fact that the plots span different regions of the WT–θ graph, implying 

different surface layer water contents for the same range of WT.  The slope of the linear regression 

for each of these plots represents the change in θ per unit change in WT, and can be taken as an 

indication of the degree to which surface moisture dynamics are linked to WT.  Slopes are given in 

parentheses in Figure 2-5 as the percent increase in θ per cm rise in WT.  The newly-regenerated 

plots 2008 and 2010 showed a much stronger WT–θ response than all other plots; however, 1970-C 

also showed a fairly strong response.  Plots 2008 and 2010 also showed the highest absolute θ values 

of all plots when WT was within 20 cm of the surface.  At plots 2004, 1970-A and 1970-B, which 

had profile heights ranging from 16 – 40 cm, slopes approaching zero indicated that changes in WT 

were only very weakly related to changes in θ.  This would suggest that surface moisture dynamics 

have become somewhat decoupled from WT at these plots.  A non-linear response in θ was evident at 

plots 2006, 2010 and 1970-C, and suggested that the effect of WT on θ diminished as WT decreased.  

Time series of θ generated by the static TDR probes inserted in the profiles at 2006, 2010, 

and 1970-C revealed that θ in the near-surface layers responded differently to precipitation events at 

different plots (Figure 2-6).  At plots 2006 and 1970-C, the response of θ within the profile to WT 

was much stronger when WT was close to the surface (Figure 2-7).  A series of precipitation events 

between 3.5 and 12 mm in size failed to produce a response in near-surface θ at these plots when WT 

was at its seasonal low (day-of-year 185 to 205), despite producing a clear response in WT.  Near-

surface θ remained high during a 16-day period where direct precipitation was excluded from all 

plots using tented plastic sheeting (day-of-year 209 to 225).  θ could be seen to closely mirror WT at 

these plots.  At plot 2010, the profile was not sufficiently thick for a TDR inserted horizontally to 

measure profile θ without being influenced by the θ of the cutover peat, and so the roaming WET-

SensorTM was used to measure near-surface θ.  However, the inherent variability and lower timescale 
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resolution of this measurement technique made it difficult to establish the response to precipitation at 

plot 2010.  WET-SensorTM θ measurements (representing the 0-6 cm layer) agreed well with 2.5 cm 

depth TDR readings at plot 1970-C (representing the 0-5 cm layer), but were systematically ~20% 

lower than the 2.5 cm TDR readings at plot 2006.  The reason for this is unclear.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5:  Relationship between volumetric moisture content in the surface (0-3 cm) 

layer (θ) and water table position (WT) relative to the growing surface for a) 

spontaneously regenerated and b) experimentally restored Sphagnum profiles.  

Moisture content values were determined using a calibrated portable TDR device.  All 

relationships were significant at the 0.05 level (Pearson’s Correlation Coefficient, two-

tailed test of significance).  Slopes are shown in parentheses as the percent change in θ 

per cm change in WT. 
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Figure 2-6:  Compound figures showing changes in moisture content with depth, 

WT position, and precipitation over time for 3 different plots: a) 2010, b) 2006, and 

c) 1970-C.  Values for each figure are averaged across 3 replicate profiles at each 

site.  Measurements include both in-situ TDRs (solid lines; n=3 for all values 

except 2.5 cm depth where n=1) and WET-sensor portable TDR (dotted lines; 

n=15).  TDR depths relative to profile surface indicated by positive numbers; 

negative numbers indicate depth below cutover peat interface. Changes in WT 

shown with dashed green and red horizontal lines representing the profile surface (0 

cm WT datum) and former cutover peat surface, respectively.  Profile heights are 

3.5 cm (2010 plot), 9.5 cm (2006 plot), and 23.5 cm (1970-C plot). Direct 

precipitation was excluded experimentally from each of the plots between day 209 

and 225.  
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2.5   Discussion 

In general, the hydrophysical properties of the regenerated profiles show that the greatest 

differences between the spontaneously regenerated and experimentally regenerated plots occur closer 

to the profile base. This is most likely due to the fact that at SPONT, where plots were assumed to 

have begun regenerating >40 years before present, decomposition and compression from the weight 

of overlying layers have compacted the moss fibre.  More decomposed and compacted plant matter 

generally possesses a greater abundance of small pore sizes (Boelter, 1968) imparting a stronger 

capillary force.  This has resulted in a higher bulk density and water retention capacity, and slightly 

lower Ksat , at SPONT compared to the same layer at the <10 year old EXPER plots.  Whereas an 

abrupt transition in hydrophysical properties exists at the interface between the regenerating layer 

and the cutover peat at EXPER, at SPONT the basal layer is approaching levels of bulk density and 

retention capacity comparable to the cutover peat.  Interestingly, plot 2004 showed a basal layer bulk 

density and retention capacity only slightly lower than that of the SPONT plots, suggesting that some 

degree of compaction and decomposition had already taken place after only 9 years of growth.   

Figure 2-7:  Water table position versus volumetric water content (θ) measured by 

TDRs 2.5 cm below the growing surface (representing roughly the 0-5 cm layer of the 

regenerated profile) at two plots. 
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Cutover peat samples had higher average bulk density and greater retention capacity than 

Sphagnum samples.  While Sphagnum profiles exhibited a wide range of θ in the field, the TDR 

probes at the three instrumented plots show that θ variance within the cutover peat was remarkably 

small and that this layer remained close to saturation for the entire study season.  Peat samples also 

showed little variance in θ across the range of ψ tested in the laboratory, which encompassed the ψ 

range observed in the field within peat at similar depths (a seasonal minimum of -14 cm).  

Regenerating Sphagnum at plots 2008 and 2010, consisting of only a thin (3-4 cm) layer directly 

overlying the cutover peat, maintained the highest average surface θ over the study period.  This 

would suggest that at these plots the water stored in the cutover peat can be easily accessed by 

capillary flow to maintain photosynthesis, at least within the relatively narrow range of ψ observed in 

the field.  

Direct precipitation appeared to be poorly retained within the upper regenerating layer.  This 

is supported by field observations of θ in the near-surface layer at plots 2006 and 1970-C, which 

showed very little response to substantial (up to 12 mm) precipitation events during periods of lower 

WT (Figure 2-6).  When WT was within about 20 cm of the surface, near-surface θ mirrored the 

position of the water table very closely.  Furthermore, logging TDR probes at the 2.5 cm depth level 

showed clear hysteretic loops on a θ–WT graph and a relatively narrow variance in θ for a given WT, 

suggesting the strong predominance of WT as a control on near-surface θ (Figure 2-7).  This said, it 

has been demonstrated that small (<1 mm) atmospheric inputs of water such as dewfall can be crucial 

to maintaining metabolic processes during highly water-limiting conditions (Csintalan et al., 2000; 

Strack & Price, 2009), which were not observed in this study.  The 16 day period of precipitation 

exclusion for all plots in this study, during which mosses remained healthy and productive, shows 

that Sphagnum can maintain adequate moisture for photosynthesis in the absence of precipitation 

inputs for at least this long, although it is noted that WT was also near its seasonal high during the 

first several days of this period.  The large variations in θ observed within the profiles during this 

period can thus be attributed exclusively to WT fluctuations and, to a lesser extent, evaporation, in 

the absence of significant atmospheric inputs of water.  The magnitude of diurnal variations in WT 

was noticeably greater when WT was below the cutover interface than when it was within the profile 

(most evident for plot 1970-C), most likely as a result of the lower specific yield of the cutover peat 

relative to the Sphagnum.  

While WT dynamics were closely tied to near-surface (0-3 cm) θ at plots 2008 and 2010, the 

effect of WT on θ in this layer tended to diminish with increasing profile height.  Plot 2006, with a 

regenerated layer thickness of 10 cm, showed a θ-WT relationship that was clear but weaker (had a 
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lower slope) than that of plots 2008 and 2010 (Figure 2-5).  The regenerated layers were >15 cm 

thick at all other plots and the θ-WT relationship slopes approached horizontal, indicating that WT 

was a relatively poor predictor of θ in the near surface at these plots (plots 2004, 1970-A and 1970-

B).  Plot 1970-C was an important exception to this.   

The profile at plot 1970-C was notably different from the other well-developed Sphagnum 

profiles in that surface moisture dynamics were more strongly linked to WT than at any other plots 

besides 2008 and 2010, especially in relation to the other plots at SPONT where all profiles exceeded 

20 cm in height.  Samples from 1970-C also had a much greater water retention capacity than other 

plots in the 0-5 cm and 5-10 cm profile depth intervals across the range of ψ tested, and had 

marginally higher bulk density than the other SPONT plots throughout the regenerated profile.  This 

may be attributable to the fact that this plot had both a significantly (p<0.05; One-way ANOVA with 

Tukey’s HSD Post-hoc tests) higher density of capitula (3.31 cm-2) and a greater proportion of S. 

rubellum Wils. (98.5%) than all other plots (Table 2-1).  This area of the peatland also had a visually 

distinctive regenerated surface relative to other areas of the site, with a denser appearance, more even 

surface contour, and very little ericaceous plant cover.  It is well established that hummock species 

are able to remain productive at higher elevations above the water table than lawn or hollow species 

due to the greater capillarity afforded by tighter spacing of individuals (Hayward & Clymo, 1982; 

Luken, 1985; Rydin, 1993).  Sphagnum rubellum has also been found to have a higher water 

retention capacity than S. magellanicum (McCarter & Price, 2012), a species that was present at most 

plots in varying proportions.  While the heterogeneous array of species at most plots and the small 

number of plots in this study made it impossible to isolate the effects of individual species on soil 

water dynamics, it appears very likely that the differences in hydrophysical properties and WT 

connectivity observed at 1970-C are attributable to the particular community architecture of the 

dense S. rubellum Wils. carpet that has developed there.  Although all other plots where the 

regenerated layer thickness exceeded 15 cm had reduced WT connectivity and generally low near-

surface θ, plot 1970-C demonstrated that WT connectivity and capillarity of regenerating Sphagnum 

layers are not simply a function of age but are controlled by factors such as species composition and 

community architecture as well.   

An analysis of the observed range of WT relative to the regenerating Sphagnum – cutover 

peat interface at each plot (Figure 2-8) revealed that at SPONT, WT remained above the cutover peat 

for 818% of the study season, whereas at EXPER, WT was above the cutover peat for only 3025% 

of the time.  Although this cannot be used as evidence that seasonal WT has increased over the time 
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period of regeneration as data on initial conditions are lacking, the fact that the site was abandoned 

after peat extraction and that drainage ditches remained active during this time means it is unlikely 

that the water table was above the cutover surface at the start of regeneration.  This suggests that the 

seasonal WT has increased at SPONT and that spontaneously regenerated areas are able to constrain 

WT fluctuations largely to within the regenerated moss profile.  Several studies (McNeil & 

Waddington, 2003; Lucchese et al., 2010; McCarter & Price, 2013) have identified the latter 

observation as significant, because once WT fluctuations are constrained entirely to within the 

regenerated layer, the hydrologic regime of the plots functions much more similarly to that of a 

natural bog peatland.  There are two main feedback processes which could account for this 

observation.  Firstly, as the retention capacity of the profile base increases and Ksat decreases (albeit 

only slightly), a greater proportion of precipitation is retained in the regenerated layer.  Secondly, 

there may be an evaporation-limiting feedback (Waddington et al., 2014) occurring, whereas the 

thickness of the regenerated layer increases, the vertical Kψ decreases as the upper layers dry, 

limiting upwards transfer of water and thus reducing evaporative losses.  A combination of these two 

processes could account for the perceived increase in seasonal WT at SPONT.  

The relationship between ψ and Kψ between samples did not exhibit as much variability as 

expected, given the substantial variation in other hydrophysical properties.  This was surprising given 

the large differences in θ between samples at a given ψ, as hydraulic conductivity is often assumed to 

be a function of θ as explained by differences in water-filled pore diameter and pore connectivity for 

a given level of saturation (Buckingham, 1907).  The relationship between θ and Kψ for all samples as 

a group was quite weak, with an average r2 across all tensions of 0.16. This presents two possible 

interpretations.  One is that as ψ decreases, the connectivity between the remaining saturated pores 

decreases more rapidly in some samples than in others (or flowpath tortuosity increases more rapidly, 

or a combination of the two).  In the peat samples for example, which maintained θ>0.77 throughout 

the analysis, it may be that the largest pores which drain at ψ of -3 to -12 are capable of transmitting 

much more water than those pores which are only slightly smaller due to dramatically lower 

connectivity between these pores.  This would account for the fact that Kψ values for peat are within 

an order of magnitude of values for surficial Sphagnum samples at the lowest levels of ψ despite 

having a water content >50% higher.  An alternative explanation is that a large proportion of the 

water remaining in the samples at lower pressures was immobile, such as that stored in hyaline cells, 

and that differences in θ between samples at a given ψ are attributable primarily to differences in 

immobile water content rather than mobile water content.  This would explain the similarity in Kψ  

across samples, while differences in θ could result from differences in the bulk volume of hyaline 
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cells within a sample.  We propose that these differences derive from differences in species 

morphology and capitula density, although no known studies to date have examined this proposition.  

Regardless of the explanation, the results show that Kψ in regenerating moss layers drops 

precipitously between 0 and -30 cm ψ, corresponding to an approximate 30 cm WT decline below a 

given point within the profile.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8:  Probability of exceedance of a given water table position on the y-axis 

over the study period.  The interface between the old cutover peat and the regenerating 

moss layer is used as the 0 cm datum for all plots and is also indicated here by the 

black horizontal line, with positive values signifying water tables above the interface.   

Spontaneously regenerated (SPONT) plots are represented by long dashed lines and 

experimentally restored (EXPER) plots by short dashed lines to emphasize differences 

between the two groups. 
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2.6 Conclusion 

This study is the first to describe the evolution of regenerated Sphagnum layers in terms of 

their specific hydrophysical properties and hydrologic behaviour.  Sphagnum regenerating on cutover 

peat surfaces appears to follow a pattern of structural evolution whereby the bulk density and water 

retention capacity of the layers directly overlying the cutover peat increase over time.  These 

properties were consistently greater in the basal layer at the older SPONT plots than in the same layer 

at EXPER because the longer period of growth has allowed more time for decomposition and 

compaction of the moss.  The high bulk density and retention capacity of the nine year old 2004 plot 

relative to the other EXPER plots suggest that the development of this water-retaining basal layer 

may proceed more quickly than previously thought.  The ability of the basal layer to hold more water 

against tension may be important for maintaining capillary flow during periods of low WT. 

Direct precipitation appeared to be poorly retained in the Sphagnum canopy and near-surface.  

Changes in WT position were strongly correlated with θ in the near-surface at all plots, and the 

relatively narrow variance in the TDR-derived water contents for a given WT suggests that 

capillarity was a much stronger control on surficial θ than precipitation.  However, large differences 

between plots in the WT–θ relationship show that the ability of the profiles to convey water to the 

surface differs greatly between different profile structures.  Six of the seven plots demonstrated a 

pattern of hydrophysical evolution whereby the surficial θ that can be sustained at a given WT 

decreases as the thickness of the regenerated layer increases.  Plot 1970-C was an exception to this 

trend, and while this area may or may not be unique within this peatland or other cutover sites, it 

shows that community architecture and species composition have the potential to be more influential 

than layer thickness in determining profile capillarity.  The Kψ curves observed here could not 

account for the large differences in upwards water transmission observed in the field, but 

demonstrated the rapid (>4 orders of magnitude) reduction in Kψ that occurs as soil water pressures 

drop to -30 cm.   

The data shown here strongly support the conclusion that WT is an effective regulator of 

near-surface θ in regenerating Sphagnum when WT is within 30 cm of the surface and possibly at 

lower positions as well.  The data of Ketcheson and Price (2014) also support this conclusion. This 

implies that regulation of WT is an effective means of optimizing hydrologic conditions for 

Sphagnum biomass production, especially at the thinner <9 year old layers most relevant to biomass 

production cycles, even when WT remains below the cutover peat surface.  WT fluctuations 

remained within the profile for a substantially longer proportion of the growing season at SPONT 

than at EXPER, and seasonal WT seems to have increased over time at SPONT.  This suggests that 
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layer structure is evolving such that it may at some point be able to fully constrain WT to within the 

regenerated profile, which several studies (McNeil & Waddington, 2003; Lucchese et al., 2010; 

McCarter & Price, 2013) have identified as a critical criterion for hydrological restoration as well as 

net carbon sequestration in restored bog peatlands.  High near-surface θ was sustained in the absence 

of direct precipitation for at least 16 days; however, the response of the layers to more water-limiting 

conditions is unknown, as field observations occurred in a season where measured precipitation 

greatly exceeded estimated evaporation.  Future work should integrate soil water dynamics with CO2 

measurements, and attempt to quantify the resilience of regenerating Sphagnum in cutover 

environments to drought or water table drawdown to establish hydrologic limits of tolerance.  A 

numerical modelling approach using the hydrophysical parameters described here may prove useful 

in determining both the limiting and optimal hydrologic conditions for growth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

3.0    Manuscript 2:  Hydrologic controls on productivity of regenerating Sphagnum 

in a cutover peatland 

 

3.1   Abstract  

In addition to ecological restoration as a post-industrial use of mined peatlands, recent 

research into the production of Sphagnum biomass on cutover sites has highlighted the need for an 

improved understanding of the ecohydrology of Sphagnum regenerating in these environments.  

Previous work suggested that limited connectivity between surficial layers and the underlying 

partially decomposed plant matter and peat would result in water stress and inhibited growth.  This 

study links the soil water dynamics of regenerated layers ranging in age from 3-43 years and from 3-

40 cm in thickness to the productivity of Sphagnum in order to determine the hydrologic controls on 

productivity and the optimal range of water content for producing Sphagnum biomass.  Productivity 

was never observed to be limited by insufficient supply of water, including during periods where 

water table was >40 cm below the surface and periods of 16 days without measured precipitation.  

While layers of different ages and thicknesses were able to sustain adequate water supply to remain 

productive under a range of conditions, the ability of layers to transmit water upwards differed 

greatly.  Water content in the near-surface inhibited productivity during wetter periods, especially at 

newly regenerating sites where the layer was <5 cm thick.  This has important implications for 

biomass production using the Sphagnum species studied here.  Using a mixed linear modeling 

approach to isolate the effects of water content on variance in productivity from those of other 

measured variables, a volumetric water content range of 0.13 to 0.5 is identified as optimal. 

 

3.2   Introduction  

The drainage and mining of peatlands for Sphagnum peat represents a significant localized 

disturbance to peatland ecosystems in certain regions of Canada, most notably southeastern Québec 

and northeastern New Brunswick (Lavoie & Rochefort, 1996; Daigle & Gautreau-Daigle, 2001; 

Poulin et al., 2005).  Peat extraction involves site drainage and the removal of the surface layer of 

vegetation and the upper layers of peat.  Following extraction operations, the altered physical 

environment and hydrology of sites impede the recolonization of the primary peat-forming genus 

Sphagnum in most cases (Lavoie & Rochefort, 1996; Poulin et al., 2005), and the oxidization and 

decomposition of the formerly saturated peat can convert sites from sinks of atmospheric CO2 to 

large and persistent sources (Waddington & Price, 2000; Waddington et al., 2002; Petrone et al., 

2003).  Motivated by concern over regional peatland losses and the degradation of carbon-rich soils, 
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restoration techniques were developed over the past two decades to return these cutover sites to 

productive ecosystems dominated by Sphagnum mosses (Ferland & Rochefort, 1997; Rochefort, 

2000; Rochefort et al., 2003). The primary aim of the North American method to peatland restoration 

is the creation of hydrologic conditions which favour the establishment of a Sphagnum carpet on 

cutover surfaces (Rochefort et al., 2003; Quinty & Rochefort, 2003).  This is seen as a critical 

restoration criterion from both an ecological perspective and a long-term carbon sequestration 

perspective (Ferland & Rochefort, 1997; Rochefort, 2000; Rochefort et al., 2003; Waddington et al.,  

2010). 

In addition to ecosystem restoration as an after-use of cutover peatlands, there has been 

increased interest over the past decade in the potential commercial production of Sphagnum biomass 

on cutover sites, particularly in Germany (Gaudig & Joosten, 2002; Gaudig, 2012).  Canadian 

Sphagnum peat is extracted primarily for horticultural use as a growing substrate (Cleary et al., 

2005), but research has suggested that dried Sphagnum biomass can be substituted for the only 

slightly decomposed “white peat” currently preferred by industry without any reduction in crop yield 

(Emmel, 2008).  Additionally, it may be a lower carbon emission alternative to mined peat as it does 

not require the exploitation of undisturbed peatlands (Gaudig, 2012; Silvan et al., 2012).  

Water availability is crucial for the growth and survival of Sphagnum, and the lack of a 

sufficient and stable water supply often constrains regeneration on cutover surfaces (Price, 1997; 

McNeil & Waddington, 2003; Price et al., 2003).  Being non-vascular and also lacking the ability to 

regulate water loss (Proctor, 1982; Titus & Wagner, 1984), Sphagnum relies on passive external 

capillary transport of water to the capitula – the cluster of branches and leaves comprising the top ~1 

cm of the plant – to sustain photosynthesis (Clymo & Hayward, 1982; Proctor, 1982).  If upwards 

flows are consistently less than evaporative demand the plants will desiccate (McCarter & Price, 

2012) and photosynthesis will be severely reduced (Gerdol et al., 1996; McNeil & Waddington, 

2003).  Hyaline cells store water important for plant structural integrity and leaf photosynthetic 

capacity. Water is extracted from the narrow pore openings of these cells when soil water pressures 

drop below a threshold value in the range of -200 to -600 cm (Clymo & Hayward, 1982; Lewis, 

1988). However, Price & Whitehead (2001) found that Sphagnum was absent from areas where 

seasonal soil water pressures dropped below -100 cm on a cutover bog abandoned for 30 years. 

Lower specific yield in the formerly saturated deep peat can increase the variability of water table 

fluctuations below cutover surfaces relative to natural peatland surfaces, reducing soil water 

pressures and thus moisture availability for Sphagnum (Price, 1996). While high atmospheric water 

demands and constraints on capillary transport can limit productivity, too high a water content in the 
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capitulum can also be limiting as the rate of CO2 diffusion is reduced as the film of water covering 

leaves becomes thicker (Dilks & Proctor, 1979; Williams & Flanagan, 1998). Furthermore, the 

stability of the water supply is important in supporting growth processes, as repeated drying cycles 

negatively affect photosynthetic rates and drastically increase respiration following re-wetting 

(Schipperges & Rydin, 1998; McNeil & Waddington, 2003).  

The relationship between water content and Sphagnum productivity has been the subject of a 

number of studies.  Many of these have looked at this relationship in a laboratory setting, using either 

individual capitula (Rydin & McDonald, 1985; Murray et al., 1989; Williams & Flanagan, 1996; 

Schipperges & Rydin, 1998) or small samples of Sphagnum (Silvola, 1992; Gerdol et al., 1996; 

Robroek et al., 2007; Van Gaalen et al., 2007; Robroek et al., 2009; Strack & Price, 2009), while in-

situ field studies are comparatively rare (Luken, 1985; Murray et al., 1989; McNeil & Waddington, 

2003; Strack et al., 2009).  Furthermore, many field studies quantify productivity using seasonal 

timescale measures such as crank wires (e.g. Luken, 1985; McNeil & Waddington, 2003) which miss 

finer scale variations in productivity and water content, and often use destructive sampling methods 

to determine capitulum water content (e.g. Luken, 1985; Murray et al., 1989) which prohibits 

frequent repeated measurement of the same area.  Additionally, the structure and soil water dynamics 

of regenerating Sphagnum layers in cutover peatlands may differ substantially from that of natural 

peatlands (see Chapter 2) and reduced bulk density and unsaturated hydraulic conductivity have been 

found to limit upwards water transfer to the capitula (Schouwenaars & Gosen, 2007; McCarter & 

Price, 2014).  The specific hydrologic conditions under which Sphagnum regenerating on cutover 

surfaces can remain productive are unclear.  This study seeks to evaluate the in-situ productivity of 

Sphagnum regenerating in a cutover peatland in relation to instantaneous hydrologic conditions using 

non-destructive measures of capitulum water content. The specific objectives are:  1) to evaluate and 

contrast the influence of capitulum water content and canopy air temperature on the productivity of 

regenerating Sphagnum profiles of different ages, and 2) to identify the range of capitulum water 

content that maximizes productivity. 

  

3.3   Methodology 

3.3.1  Study Site 

Data was collected between May 24 and August 13, 2013 at a large abandoned cutover 

peatland located on the Acadian Peninsula near Shippagan, New Brunswick (47°40’N, 64°43’W).  

The 30-year (1980-2010) mean annual precipitation in Shippagan is 1077 mm, of which rain 

comprises 69%, and the mean annual air temperature is 4.8°C (Environment Canada, 2014).  The site 
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was mined using block cutting techniques and was abandoned following the end of extraction 

operations around 1970. Because of the extraction method used, the site is characterized by an 

alternating baulk-and-trench structure, where trenches ~20m wide are separated by baulks ~5 m wide 

and ~1 m higher in elevation than the trenches (Robert et al., 1999).   Sphagnum has spontaneously 

recolonized the majority of the area within the trenches but is absent on the baulks.  The degree of 

spontaneous recolonization in this peatland is much higher than at many other block-cut peatlands in 

more continental climates, where large areas can remain devoid of Sphagnum decades after 

abandonment (Poulin et al., 2005; Gonzalez et al., 2013).  In two regions of the peatland, Sphagnum 

biomass production experiments have been ongoing since 2004 (Landry & Rochefort, 2009).  Within 

these trenches, sections measuring roughly 15 × 90 m were cleared of any vegetation that had 

spontaneously regenerated in the period since abandonment, leaving a surface of bare cutover peat.  

A new Sphagnum cover was then established on these surfaces based on the North American method 

for bog restoration outlined in Quinty and Rochefort (2003).   

Seven plots were established at the site for CO2 measurements and hydrologic monitoring, 

each plot consisting of three replicate sub-plots delineated by square metal collars with sides of 60 

cm and a height of 40 cm.  Collars were cut into the peat until the top was sitting just above the 

surface of the regenerated layer.  Sub-plots are referred to as “collars” hereafter.  The collars at each 

plot were located within a 2 m radius of one another and were installed in areas entirely covered by 

Sphagnum where the regenerated profile appeared to be homogenous in thickness and species 

composition.  Boardwalks were constructed in the vicinity of collars to reduce the impact of 

accessing collars for measurements on the regenerated profiles.  Four of the seven plots were within 

the experimentally regenerated areas of the site, collectively referred to here as EXPER (plots 2004, 

2006, 2008 and 2010), where Sphagnum was introduced on cleared cutover surfaces in the spring of 

each year (Landry & Rochefort, 2009). At the time of this study (2013), these plots ranged in age 

from 3 to 9 years since the start of regeneration, while the vertical thickness of the regenerated moss 

profiles varied from 3.5 to 17 cm.  The other three plots were located in areas where regeneration 

was assumed to have taken place spontaneously at the time of abandonment in 1970, referred to 

collectively as SPONT (plots 1970-A, 1970-B and 1970-C).  These plots were well-developed and 

had profile thicknesses of between 23 and 40 cm.  

Species abundance, expressed as a relative proportion of total spatial coverage within collars, 

was evaluated by visual estimation.  Capitulum density was estimated by counting the number of 

individuals within a 2 cm square quadrant of transparent graphing paper at 16 randomly selected 

locations within the collars at each plot (Figure 3-1).  Plots were generally characterized by a mix of 
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Sphagnum species within the section Acutifolia (S. fuscum (Schimp.) Klinggr., S. rubellum Wils., S. 

flavicomans (Sect. Acutifolia)) and S. magellanicum Brid., with S. rubellum as the most prevalent 

species at the site and the only species of the four occurring at all plots.  Nomenclature for Sphagnum 

follows that of Anderson (1990). 

 

3.3.2  CO2 Flux Measurements 

Net ecosystem CO2 exchange (NEE) was measured approximately twice a week at each 

collar using a 0.108 m3 dynamic Plexiglas chamber coupled with an infrared gas analyser (IRGA) 

(Model-EGM4; PP Systems, Hitchin, UK), following the method of Griffis et al. (2000).  NEE was 

expressed in g CO2·m
-2·day-1 and was calculated using:   

 

NEE = 
∆CO2∙𝑀𝑚

𝑀𝑣
∙

𝑉

𝐴
∙ 𝐶         Eq.  3-1 

  

where ΔCO2 is the change in CO2 concentration over time (ppm·s-1), Mm is the molar mass of CO2 

(44.01 g·mol-1), Mv is the molar volume of a gas at standard temperature and pressure (0.224 m3·mol-

1), V is the temperature-corrected combined volume of the chamber and the void space between the 

Sphagnum surface and the open bottom of the chamber (m3), A is the ground surface area within each 

collar (m2), and C is a conversion factor to convert concentration from ppm to mol and time from 

seconds to days (0.0864). Each chamber run was 120 seconds in duration, and all runs retained for 

analysis had r2 > 0.9 except where the change in concentration was ≤2 ppm in which case runs were 

retained as long as the change was monotonic. Two fans within the chamber ensured that air within 

the chamber was well-mixed and a water-filled trough running along the outside of the collar created 

a seal between the collar and chamber.  Although temperature was not controlled within the chamber, 

chamber air temperature remained within 1°C of ambient temperature in 96.3% of runs.  

Photosynthetic photon flux density (PPFD, mol photons·m-2·s-1) within the chamber at 10 cm above 

the growing surface was recorded during each measurement, and the air temperature within the 

Sphagnum canopy (TC) and the water content of the top 3 cm of the profile were recorded 

immediately before or after each chamber measurement. TC was measured using a 1 cm copper 

constantan wire thermocouple probe inserted just below the surface in three randomly selected 

locations within the collar and left to equilibrate. The methodology for determining water content is 

described below along with the methodology for other hydrologic measurements.   
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Gross ecosystem productivity (GEP) was determined by subtracting the ecosystem 

respiration (ER) component of CO2 flux from the NEE under non-light-limiting conditions.  An 

opaque (PPFD = 0) blind was placed over the chamber to determine ER after each full-light NEE 

measurement.  For this investigation, chamber measurements where PPFD exceeded 750 mol·m-2·s-

1 were considered to be light-saturated.  Published estimates of the light saturation point for 

Sphagnum range from 250 to 500 mol·m-2·s-1 (Harley et al., 1989; Williams & Flanagan, 1996).  

All chamber measurements were performed between 10 AM and 4 PM.    CO2 concentrations inside 

the chamber were allowed to return to ambient levels between each measurement.  Any vascular 

vegetation inside the collars was clipped so CO2 measurements reflected only the NEE of Sphagnum. 

Clipped vascular plants were replaced with cuttings of fresh ericaceous shrub branches that were 

changed periodically.  This was done to ensure that similar surface shading was maintained within 

the collar and that latent heat exchanges were restricted to the moss surface.   

 

3.3.3   Hydrologic Measurements 

Precipitation was measured and evaporation estimated in order to quantify the primary 

hydrologic inputs and outputs of the regenerated Sphagnum profiles.  Precipitation was recorded by 

one manual and one automated tipping-bucket raingauge, while a pair of weighing lysimeters 

containing peat-Sphagnum monoliths was used at each plot in combination with data from a 

meteorological station at the site to estimate evaporation using the Priestley-Taylor method (Priestley 

& Taylor, 1972) following the approach outlined in Van Seters and Price (2001). Pressure 

transducers in wells recorded water table position (WT) at 30 minute intervals at each plot, and 

multiple string-level measurements of the vertical distance between the well top and the growing 

surface allowed for the position of the water table relative to the surface to be determined for each 

individual collar. Volumetric water content (θ) in the top 3 cm of the profile, taken to be 

representative of the moisture content in the capitulum, was measured using a WET-SensorTM 

portable time-domain reflectometry (TDR) device (Delta-T Devices, Cambridge, UK).  The prongs 

of the device were inserted to a depth of 3 cm and readings taken at five points throughout the collar 

to provide a representative θ value of this layer at the time of chamber measurement.   Recorded 

WET-Sensor θ values were later transformed by calibration equations, which were determined by 

relating WET-Sensor readings of known-volume cylindrical Sphagnum samples to the 

gravimetrically-determined θ of these samples, following the method of Topp et al. (1980).  Two 

Sphagnum samples from each plot were used to derive plot-specific calibration curves to account for 

the influence of any differences in bulk density, capitula density or other parameters on the 
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measurement of θ.  Unless otherwise stated, θ refers here to the volumetric water content of only the 

0-3 cm layer.   

The pH, electrical conductivity (EC), and salinity of groundwater in sampling wells close to 

the collars at each plot were recorded immediately before or after chamber measurements using a 

multi-parameter probe (model PCTestr 35; Oakton Instruments, Vernon Hills, USA) to determine if 

these parameters were a confounding factor in evaluating differences in CO2 exchange.  

Tensiometers set in the cutover peat 2.5 and 7.5 cm below the former cutover surface at two of the 

plots provided an estimate of soil water pressure beneath the regenerated layer. 

A rainfall exclusion experiment was carried out over a 16 day period between July 28 and 

August 13, 2013, to investigate the effects on productivity of removing direct precipitation as a 

source of water.  Precipitation was excluded using tented clear plastic sheets attached to posts 

inserted into the peat around the collars at each plot.  Plastic sheeting was removed during 

measurements of GEP and other environmental variables, and was installed at least 70 cm above the 

collars at the tent peak to minimize the disturbance to evaporation dynamics.    

 

3.3.4   GEP Modeling and Statistical Analysis 

To determine the most important controls on variations in GEP, a mixed linear model (IBM® 

SPSS® Statistics 20.0, IBM Corp, 2011) was used with θ in the 0-3 cm layer, air temperature within 

the Sphagnum canopy (TC), plot, and their interactions as fixed effects, as well as a random effect of 

plot (at the “collar” level). This approach was best suited to analysing the data because it considers 

correlated errors arising from repeated measurements of the same experimental units through the 

random effect, and also allows for nested study designs.  Data for groundwater chemistry were too 

sparse to use in the model as data collection for these parameters did not begin until midway through 

the study season; this was justified as variance in pH, EC, and salinity was low and uncorrelated with 

GEP (see results).  WT was not included in the model as it was considered to be a proxy for 

capitulum water content, a parameter that was more closely approximated by θ.  The model was 

validated by visually assessing the normality and homogeneity of the residuals of the predicted 

values.  Model selection is described in the results section along with the output. 

Friedman’s 2-way Analysis of Variance by Rank (related samples) was used with a 

significance threshold of 0.05 to assess the statistical significance of differences between plots in the 

distributions of the measured parameters (GEP, θ, WT, TC).  This test was selected as data was 

typically non-normal for one or more plots within each parameter and sample sizes nearly always 

differed. All analyses were performed in IBM® SPSS® Statistics 20.0. 
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3.4   Results 

3.4.1  Field Data 

The study season (May 24 to August 13, 2013) was characterized by extremely wet 

conditions, receiving 227 mm more than the 30-year (1980-2010) mean for the same period 

(Environment Canada, 2014).  More than two-thirds of seasonal precipitation was received in 5 

events >30 mm in size, and nearly a quarter was from a single 100 mm event on July 26-27.  Soil 

water pressures within the cutover peat remained above -15 cm at all measured plots and depths, and 

precipitation exceeded estimated evaporative water losses by >110 mm at all plots.   

The range of GEP values recorded during light-saturated chamber runs throughout the study 

season is shown for each plot in Figure 3-2, along with the range of TC during chamber runs and the 

seasonal range of WT and θ at each plot.  There were significant differences (p<0.05) between 

different plots in terms of GEP, θ, and WT, while TC did not differ appreciably between plots.  Plot 

2008 was significantly less productive than all other plots, and also had significantly higher mean 

seasonal capitulum water content (0.70) than all other plots except 2010, which was also quite high 

(0.57).  Plots 2004, 2006, 1970-A and 1970-C had similar (not significantly different) levels of GEP.  

The differences in mean seasonal θ were striking in that both the means and the ranges showed 

substantial variation between plots, especially when the relatively small, though statistically 

significant, absolute differences in WT (n2228) between many of the plots are considered.  Plot 

1970-B experienced the lowest mean seasonal and absolute WT, reaching a seasonal low of 57 cm 

below the growing surface, while at all other plots WT remained within 30 cm of the surface 87% of 

the time or more.  Groundwater chemistry data collection did not begin until midway through the 

study season, and as sample sizes were small (n=8 per plot) a statistical comparison of sites was not 

performed.  Nonetheless, there was little variation in the measured parameters across the site, with 

average values of 4.530.19 for pH, 75.813.9 S for EC, and 56.18.9 ppm for salinity.  None of 

these parameters was significantly correlated with GEP (Pearson’s Correlation Coefficient, two-

tailed test of significance ; p0.69 for all parameters). 

GEP values were plotted against near-surface θ and TC recorded at the time of chamber 

measurement (Figure 3-3).  Individual plots tended to cluster in distinct regions of the GEP–θ graph.  

Plots 2008, 2010, and 1970-C were wetter and had greater variance in θ than the other four plots, and 

had a negative relationship with GEP.  There was a high degree of scatter in the GEP–θ relationship, 

but a negative relationship was evident for higher values of θ (>~0.7).  Within the lower range of θ 

(plots 2004, 2006, 1970-A and 1970-B) no clear relationship was apparent, although the two driest 
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plots (2004 and 1970-A) had positive relationships with GEP.  For the GEP– TC relationship, all 

plots had positive linear correlations, four of which were statistically significant at the 0.05 level. 

The presence of the plastic sheeting above the collars during the 16-day rainfall exclusion 

experiment reduced incoming PPFD by an average of 22292 mol·m-2·s-1 and had no measurable 

effect on air temperature (n=20).  The reduction in light intensity was assumed to have been too 

small to have had a meaningful influence on moss physiological condition or collar evaporation 

dynamics (<10 percent of typical full-light conditions of ~2400 mol·m-2·s-1).  GEP measurements 

taken during this time were not significantly different for 5 of the 7 sites (Related Samples Wilcoxon 

Signed Rank Test, p>0.05), while plots 2006 and 2008 had significantly lower GEP (p<0.05).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1:  Bar graph showing the relative proportion of species present at each plot, 

taken as an average of the three collars.  Numbers on bars show average layer 

thickness in centimeters (h) and density of capitulum per square centimeter (c) at each 

plot  SD (n=16 per plot).  
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Figure 3-2: Box plots of data grouped by plot, showing a) Gross Ecosystem 

Productivity (GEP) during full light measurements, b) water table position relative to 

the growing surface over the study season, c) volumetric water content (θ) in the 0-3 

cm layer over the study season, and d) air temperature in the Sphagnum canopy (TC) 

measured during full light GEP measurements. Box plot whiskers show 90th and 10th 

percentiles, dots represent 95th and 5th percentiles. Boxes sharing the same letter are not 

significantly different from one another (no significant differences found for panel d). 

Significance of differences was tested using Friedman’s 2-way Analysis of Variance 

by Rank for related samples and a significance threshold of 0.05. Grey letters below 

boxes denote n values. 
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Figure 3-3: Relationship between a) GEP and θ in the 0-3 cm layer b) GEP and TC.  

Each point represents a single measurement from one collar within a plot.  Plots are 

depicted separately to emphasize differences in relationships between plots, and lines 

of best fit are overlaid to illustrate potential interaction effects between plot and the 

independent variables. Significance of relationships are shown in the legend (* <0.05; 

** ≤0.01; ***≤0.001). 
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3.4.2  GEP Model 

A number of different mixed linear models were compared for their explanatory power.  

Model fit was assessed by the Bayesian Information Criteria (BIC) of the model output.  Briefly 

restated, the models used for comparison had fixed effects of θ in the 0-3 cm layer, TC, and plot 

(denoted hereafter by “Plot”, capitalized, for clarity) as a categorical factor with a corresponding  

random effect of plot, as well as different combinations of these variables as fixed interaction effects.  

The interaction between θ and TC was ruled out as an explanatory variable in the interest of model 

simplicity, as the interaction was not of primary interest and the exclusion of this interaction did not 

greatly influence model fit.  The final model contained the fixed and random effects described above 

along with a single interaction effect of θ and Plot.  The significance of the effects of the relative 

abundance of the four species of Sphagnum at the site could not be assessed using this method due to 

zero degrees of freedom within any plot (zero variance in species abundance). When included in the 

model, there were no significant differences between species in the predicted fixed coefficients 

(p>0.11 for all pairwise comparisons). Because the significance of species effects could not be 

assessed and there were no significant differences in the predicted fixed coefficients of species, 

species parameters were not included in the model despite a very modest improvement in BIC.  

Model output was validated by examining residuals to ensure that normality and 

homogeneity of variance were achieved, and that all explanatory variables met the assumptions of 

independence.  The selected predictor variables were able to explain nearly half (48%) of the 

variance in GEP.  The F-statistics and corresponding significance of the fixed effects are given in 

Table 3-1.  Plot, TC, and the interaction between Plot and θ were determined to be significant effects 

(p<0.05), while θ alone was not a significant predictor of GEP. 

 

 

 

 

 

 

 

 

 

 

 

Table 3-1: Estimated F-statistics and corresponding p-values of the fixed effects 

within the linear mixed model used to predict GEP (r2 = 0.48). 
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3.5 Discussion 

3.5.1  Moisture and Temperature Controls on GEP 

The relationship observed between GEP and capitulum water content (as approximated by θ 

in the top 3 cm of the Sphagnum profile) appeared to follow a roughly parabolic distribution when 

data from all plots was considered together, with a wide central range where water content is non-

limiting and a gradual decline in GEP towards higher θ.  This is similar to what has been observed in 

laboratory studies of Sphagnum productivity (Rydin & McDonald, 1985; Murray et al., 1989; 

Williams & Flanagan, 1996; Schipperges & Rydin, 1998; Van Gaalen et al., 2007; Robroek et al., 

2009) where carbon fixation rates declined above and below an optimal range of capitulum water 

content.  Plots experienced significantly different and in some cases non-overlapping ranges of near-

surface θ over the study season.  As the underlying “true” GEP–θ function most likely follows a 

parabolic distribution, this would account for the high degree of significance in the interaction of Plot 

and θ in the GEP model as data from different plots fall along discrete ranges of this function (see 

Figure 3-3, a).  Conditions where GEP was limited by low water contents were not observed in the 

field, despite the fact that a pale brittle appearance of capitula indicative of desiccation was observed 

during drier periods across sizable areas of the collars at several plots (2004, 1970-A, 1970-B), and 

that WT at plot 1970-B dropped below -50 cm.  Additionally, the exclusion of direct precipitation 

from plots for 16 days did not significantly affect GEP at 5 of the 7 plots.  The reduction in GEP at 

the other 2 plots (2006 and 2008) is more likely explained by an overabundance of water limiting the 

rate of CO2 diffusion than by a water deficit, as WT and θ at all measured depths were close to their 

seasonal maximums during this period.  The relatively wet conditions at the site and higher than 

normal rainfall precluded productivity measurements during very dry conditions when GEP would be 

substantially reduced.  However, the slopes of the driest sites (2004 and 1970-A) show productivity 

to decline with decreasing water content (Figure 3-3, a).  

A regression between the TDR–derived θ of the 0-3 cm layer (using the WET-SensorTM) and 

the wet mass (field water content) : dry mass ratio (W:D) of capitula (defined here as the top 1.5 cm 

of the profile) cut in a 3 cm radius from the point of TDR measurement revealed that the two 

measures of capitulum water content were only moderately coupled (r2=0.45, p<0.001; Figure 3-4).  

W:D of the top 1-2 cm of living Sphagnum has typically been used to quantify θ in investigations of 

the moisture-productivity relationship, with studies reporting optimal productivity at W:D of 6-15 

dependent on species and ambient conditions (Titus et al., 1983; Silvola & Aaltonen, 1984; Rydin & 

McDonald, 1985; Murray et al., 1989; Silvola, 1990, 1992; Gerdol et al., 1996). Below this optimal 

range, productivity rapidly declines, while above it the decline is typically slower.  Using the linear 
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regression equation shown in Figure 3-4 to estimate θ in the top 1.5 cm of the profile, W:D of 6-15 

corresponds to an optimal TDR-derived θ range of 0.07 – 0.23, which is roughly the minimum range 

of θ observed during the study season (5th percentile of θ ≈ 0.11).  It therefore appears that capitulum 

water content was rarely, if ever, too low to limit GEP during the study, while it may have frequently 

been limiting during wet periods of high θ.  For example, the three plots with the highest seasonal 

average near-surface θ had the lowest seasonal average GEP, and plot 2008 was both the wettest and 

least productive plot on average.  

The relationship between TDR-derived θ in the top 3 cm of the profile and W:D of 1.5 cm 

capitula was weaker than might have been expected.  Part of the reason for this may be due to 

morphology, as the dense cluster of branches comprising the capitula has a much higher water-

holding potential than the more sparsely-branched stems (Hayward & Clymo, 1982).  Robroek et al. 

(2009) reported a relatively weak correlation between the gravimetric water content of the 0-2 cm 

and 2-4 cm layers of Sphagnum monoliths sectioned in a laboratory, particularly for low water table 

treatments, suggesting that water content can vary greatly over a short distance in the uppermost few 

centimeters of the profile.  Hayward and Clymo (1982) note that even the measurement of W:D 

introduces some uncertainty as water may be lost during collection.  Accurate quantification of 

capitulum water content in the field is difficult, and the scatter in the TDR-derived θ–W:D 

relationship likely accounts for some proportion of the variance observed in the GEP–θ relationship.     

The effect of ambient temperature on growth has not been studied as well as that of moisture 

content, and can be confounded by changes in water content when increased evaporative losses are 

not controlled for (e.g. Gunnarsson et al., 2004).  Harley et al. (1989) found that responses to 

temperature in three species of Sphagnum were broad, with optimal GEP at approximately 20°C and 

GEP at or above 75% of the maximum rate between 13 and 30°C.   Robroek et al. (2007) observed 

higher vertical growth rates in the four species studied at 20°C than at 15°C.  The findings of this 

study are in general agreement with previous work. All seven plots had positive linear correlations 

between GEP and TC over a measured range of about 15-35°C, and four of these were statistically 

significant at the 0.05 level (Figure 3-3, b).   
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3.5.2  Role of Profile Age and Species Composition 

The role of species composition was difficult to parse out from that of θ and the regenerated 

Sphagnum profile age as these variables were somewhat confounded.  While it could be argued that 

species composition was similar at the four EXPER plots and between EXPER and 1970-A, within 

SPONT there were large differences in species composition (Figure 3-1).  There are few reports of 

photosynthetic responses of different Sphagnum species with which to compare GEP values, and 

comparisons can be difficult as laboratory studies tend to report values normalized per unit dry 

sample mass whereas field studies are generally expressed per unit surface area.  The following 

statements refer to studies of water content and photosynthesis in S. fuscum, Sphagnum section 

Acutifolia spp., and S. magellanicum (Silvola & Aaltonen, 1984; Silvola, 1990, 1992; Williams & 

Flanagan, 1996; Schipperges & Rydin, 1998), and apply to the species present at the study site.  

There is general agreement that photosynthetic responses at low water contents are similar across 

species, and that at higher water contents the shape of the GEP–capitulum water content function is 

species-specific.  There is some disagreement over whether or not there are meaningful differences in 

Figure 3-4: Plot of volumetric water content (θ) in the 0-3 cm layer, measured using a 

WET-SensorTM portable TDR device, against the wet mass : dry mass ratio (W:D) of 

capitulum samples (top 1.5 cm layer) extracted from the same location. Sampling 

locations (n=36) were chosen randomly within a single trench with a similar species 

composition and capitulum density.    
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maximum potential carbon assimilation rate between these species, but most studies would suggest 

that there are.   

There were no clear correlations between species relative abundance and GEP in this study, 

and there is some reason to doubt that species differences were significant in explaining differences 

in GEP.  For instance, plots 2004 and 2008 had fairly similar species compositions but 2004 had the 

highest seasonal average GEP while 2008 had the lowest.  Similarly, there were no statistically 

significant (p<0.05) differences in GEP at plots 2004, 2006, 1970-A and 1970-B despite the fact that 

1970-B had virtually no species in common with the first three.  While the effect of species 

composition was not clear and may not have been especially significant on a seasonal timescale, it is 

very likely that differences in species contributed to differences in the response to θ and other 

parameters, particularly at higher water contents (Silvola, 1992).  Different response curves and 

tolerances to saturation and desiccation in the species present at each collar could account for some 

of the unexplained variance in the GEP model. 

Though there were no statistically meaningful correlations between the age of a regenerated 

layer and GEP, there were clear differences between plots in their ability to convey water to the 

surface.  This is evident from the fact that θ in the near surface was very different between plots for a 

given WT (Figure 3-5), suggesting different degrees of capillarity.  It is well documented that in 

natural peatlands, Sphagnum species exist in particular ecological niches dictated primarily by their 

ability to conduct water to the capitulum (see the extensive literature review by Rydin, 1993).  This is 

understood to be a function of community traits, such as capitulum density, and individual shoot 

morphology (Clymo & Hayward, 1982; Titus & Wagner, 1984; Elumeeva et al., 2011), as well as the 

properties of the underlying substratum (e.g. degree of decomposition with depth) (Clymo & 

Hayward, 1982; Clymo, 1984).  As previously discussed, the structure of the substrate differs 

dramatically between natural and cutover peatlands, and thus patterns of growth influencing 

capillarity may also differ, although this has not been well studied.  It appears here that the more 

recently regenerated Sphagnum layers (plots 2008 and 2010, with thicknesses of 3-4 cm) maintain a 

very high θ throughout the range of WT observed, and that θ is strongly linked to WT at these plots, 

as indicated by a steeper slope (greater change in θ per unit rise in WT).  This is likely a function of 

the properties of the cutover peat directly underlying the regenerated layers.  Plot 2006, aged 7 years 

with a Sphagnum profile height of ~10 cm, had a strong θ–WT connection when WT was within ~20 

cm of the surface, whereas at all other plots with profile heights >10 cm there was little relation 

between θ and WT (θ was near-constant for a wide range of WT).  This was not true, however, at plot 

1970-C, where θ dynamics at the surface were clearly linked to WT.  We propose that this is due to 
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the much higher capitulum density and dominance of S. rubellum Wils. at the plot.  A full analysis of 

the soil water dynamics within the plots and the reasons for the differences between them is beyond 

the scope of this paper and is addressed in a concurrent study (see Chapter 2).  To summarize, 

although there was no obvious simple effect of profile age on GEP, there were clear differences in 

capillarity between plots which were reflected in the large differences in near-surface θ, and 

corresponding differences in GEP can certainly be at least partially attributed to this effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.3   Modeled GEP and Estimation of Optimal Water Content 

There are several possible sources for the variance in the GEP model not explained by the 

measured environmental parameters.  While it is generally accepted that water availability is the most 

important factor affecting Sphagnum productivity under non-light-limiting conditions (Busby & 

Whitfield, 1978; Dilks & Proctor, 1979; Schipperges & Rydin, 1998), studies have also evaluated the 

Figure 3-5: Water table position relative to the growing surface versus volumetric water 

content in the top 3 cm of the regenerated layer.  All relationships were significant at the 

0.05 level (Pearson’s Correlation Coefficient, two-tailed test of significance). 
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effects of other environmental parameters on Sphagnum productivity such as groundwater pH (e.g. 

Clymo, 1973) or atmospheric nitrogen deposition (e.g. Granath et al., 2012).  However, given the 

close spatial proximity of the plots (<1km), the ombrotrophic nature of the site, and the limited range 

of pH, EC, and salinity (see results), it was thought to be unlikely that these would account for any 

significant proportion of the unexplained variance controlling GEP.  More likely explanations for this 

variance are the differences in water relations between species and the potential error in the 

measurement of capitulum water content, as already discussed.  A further potential source of 

variance is the hysteretic relationship between water content and GEP that has been observed 

(Silvola, 1992; Schipperges & Rydin, 1998), where GEP at a given water content is dependent to 

some degree on antecedent conditions (note that the drying cycles in these studies were likely more 

severe than any experienced in this study).  Nonetheless, the measured model inputs were able to 

account for roughly half of the variance in GEP. 

Based on the predicted values of GEP derived from the mixed linear model, the range of θ for 

optimum productivity of regenerating Sphagnum was estimated.  Modeled GEP values are shown 

plotted against θ in Figure 3-6.  The range of θ containing the top 10% of modeled GEP values 

(n=25) was selected as the optimal productivity range.  GEP values in this range were   85% of the 

maximum modeled value.  This corresponded to a θ range of 0.13 to 0.50, which is both broader and 

higher than the θ range determined from the literature (0.07 – 0.23; see sources above, section 3.5.1).  

The likely presence of multiple optimal θ values for different species is the most probable cause for 

the broad optimal range observed here. 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6   Conclusion 

Sphagnum regenerating on cutover peatland surfaces can remain productive under a variety 

of hydrologic conditions.  In this study productivity was never observed to be limited by an 

insufficient supply of water, including during periods where the water table was more than 40 cm 

below the surface and periods where no direct precipitation was received for up to 16 days.  

Conversely, the water content in the near surface was high enough to limit productivity during wetter 

periods, sometimes severely.  This was particularly apparent for thinner regenerating layers < 5 cm in 

thickness.  This has important implications for the production of Sphagnum biomass on cutover 

surfaces using the species studied here, which are typical of hummocks and drier lawns in the study 

region.  It must be noted that conditions of extended low water table were not observed in this study, 

and the response of regenerating Sphagnum to these conditions remains uncertain.  However, this 

may not be an issue at sites where seasonal water table drawdown is limited by irrigation or other 

water management practices.   

Figure 3-6: Plot of θ against GEP values predicted by the mixed linear model. The 

shaded blue region shows the range of θ containing the highest ten percent (n=25) of 

predicted GEP values (θ values range from 0.13 to 0.50).  All GEP values in this range 

were 85% of the maximum predicted value.  This is considered to be the theoretical 

maximum productivity range of water content. 
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Based on the model used to determine the relative influence of the measured environmental 

parameters on GEP, a volumetric water content range in the 0-3 cm layer of about 0.13 to 0.50 was 

determined to be the optimal range for maximizing productivity.  The species studied here may have 

narrower optima within this range, but the presence of multiple species within each study plot made 

it impossible to identify these from the data.  Regenerated Sphagnum layers of a variety of ages and 

thicknesses were able to maintain sufficiently high water content to remain productive during all 

conditions observed in this study.  However, the ability of layers of different thicknesses and 

community structures to transmit water to the surface clearly differed.  The depth of water table 

needed to achieve optimal capitulum water content will therefore vary as a function of the properties 

of the peat substrate, the species, and the thickness of the regenerated layer.  

The quantification of water content in the capitulum layer is extremely sensitive to 

measurement depth.  Future studies attempting to measure this parameter using TDR or other non-

destructive methods need to consider the fine spatial scale on which water content can vary in the top 

few centimeters of growing Sphagnum and refine measurement techniques to focus on this layer. 
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4.0   Conclusion and Implications 

 This study is the first to specifically describe the long term structural evolution and 

ecohydrology of Sphagnum regenerating on cutover peat surfaces.  Regenerated layers appear to 

follow a trajectory of structural evolution whereby the bulk density and water retention capacity of 

the layer immediately above the former cutover peat surface increase substantially over time owing 

to decomposition and compaction.  This was quite evident at the >40 year old spontaneously 

regenerated plots, where basal layer retention capacity was on average 65 percent greater at the 

lowest measured soil water pressure (-30 cm) than at the younger plots, but could also be seen to a 

lesser degree at the 2004 plot which was only nine years old at the time of data collection.  The 

greater water storage capacity at tension in the older more developed basal layers may be significant 

in maintaining water supply for capillary flow during drier periods. Additionally, the structure of the 

regenerated layer at plot 2004 suggests that this process of decomposition and compaction, and the 

resultant increase in storage capacity at tension, may begin to occur after less than a decade of 

growth.   

Analysis of water table position relative to the former cutover surface at each plot suggests 

that seasonal water table positions may have increased relative to initial post-extraction conditions at 

the spontaneously regenerated plots (WT above cutover peat 818% of study) but not at the <10 year 

old experimentally regenerated plots (WT above cutover peat  3025% of study).  If this is indeed 

the case, it indicates that the older plots are developing a soil water regime more similar to that of a 

natural bog peatland, where the water table is always maintained above catotelmic peat, but that this 

process is still incomplete after >40 years of regeneration.  Nonetheless, the older regenerated 

Sphagnum layers seem to be developing properties conducive to peat formation, which bodes well 

for the long-term regeneration prospects of these cutover peatlands.   

 Near-surface (0-3 cm layer) water content was statistically significantly related (p<0.05; 

Pearson’s Correlation Coefficient, two-tailed test of significance) to water table position at all studied 

plots.  This fact, along with TDR time series data detailing the hydrologic response of layers to 

specific events, demonstrates the poor retention of precipitation in the Sphagnum canopy and the 

relatively greater importance of groundwater as a water source.  The seven different regenerated 

layers studied here clearly differ in their ability to transmit water to the surface.  Although six of the 

seven plots support the idea that the near-surface water content for a given depth of water table 

decreases as a function of the thickness of the regenerated layer, one of the plots (plot 1970-C) does 

not fit this model.  This is very likely attributable to the overwhelming dominance of S. rubellum and 

relatively higher capitulum density of this particular area of the site, which have imparted the 
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regenerated layer there with a higher retention capacity in the upper (0-10 cm) depth ranges and the 

ability to maintain a much higher near-surface water content for a given water table depth than other 

similarly thick regenerated layers.  Plot 1970-C shows that while layer capillarity may perhaps 

generally be a function of thickness, factors such as community architecture can supersede layer 

thickness in importance.   

 Based on field chamber measurements of CO2 exchange, this research demonstrates that 

regenerated Sphagnum layers are broadly tolerant to a range of hydrologic conditions, and are able to 

remain highly productive during periods where the water table is >40 cm below the surface and 

during periods where no precipitation is received for 16 consecutive days.  Insufficient supply of 

water does not appear to limit productivity under these conditions, but productivity may be 

considerably limited by an overabundance of water during wet periods.  Using a mixed linear model 

approach to isolate the effect of capitulum water content on light-saturated productivity from the 

effects of canopy temperature, plot, and their statistical interactions, a volumetric water content range 

of 0.13 to 0.50 is identified as optimal for growth.  It is likely that this range can be further refined by 

increasing the precision of TDR measurements to reflect the water content of only the capitulum 

layer (uppermost ~1.5 cm of the profile), as well as by isolating individual species responses from 

the response of the heterogeneous species arrays observed here. 

 This research has several important implications for Sphagnum biomass production using the 

species studied here, which are typical of hummocks and lawns in the peat extraction areas of eastern 

New Brunswick.  Firstly, that water table position is an effective means of controlling water content 

in the near-surface.  This suggests that subsurface irrigation schemes aimed at maintaining a constant 

water table below the cutover peat surface, such as those now in development in eastern Canada, will 

be successful in creating optimal conditions for Sphagnum growth provided that the correct water 

table depths are used.  The depth of water table needed to achieve the optimal range of water content 

will naturally vary as a function of the peat substrate properties, the thickness of the regenerated 

layer, and the particular species used.  However, the relationships developed here between water 

table depth and average near-surface water content for a given layer thickness should prove useful to 

this end.   

The second implication of this work is that it is entirely possible for conditions on cutover 

surfaces to be too wet for optimal Sphagnum growth.  While restoration and rehabilitation techniques 

generally focus on ensuring sufficient water supply to Sphagnum diaspores, flooded conditions or 

even periods where the water table is just beneath the cutover peat surface have the potential to 

substantially reduce levels of productivity in the species studied here.  This seems to be most relevant 
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to the newly-regenerating layers <5 cm in thickness, which are also likely the most relevant to 

biomass production cycles.   

Finally, it is clear from this work that the hydraulic properties of the regenerating layers 

change relatively quickly as the layer thickness increases.  The water table depth corresponding to 

the optimal capitulum water content range will likely differ for a Sphagnum layer 4 cm thick as 

compared to a layer 14 cm thick, although this is likely only relevant to production cycles >5 years in 

duration.  Production cycles should take this into account either by changing water table levels at 

different stages of growth or by harvesting at suitable time intervals so that near-optimal hydrologic 

conditions are maintained throughout the production cycle. 
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Appendix: WET-Sensor Calibration and Lysimeter Data 

 

WET-Sensor Calibration 

 This section describes the calibration of the WET-sensorTM portable TDR probe (Delta-T 

Devices Ltd., model WET-2) to determine volumetric water content in living and partially 

decomposed Sphagnum moss as well as peat.  Calibration generally follows the approach outlined in 

Topp et al. (1980).   

For field measurements of water content, a custom setting was used instead of the sensor’s 

“organic” factory setting to increase the sensitivity of the probe to the range of low water contents 

encountered in the near-surface of Sphagnum hummocks (which, on the organic setting, tended to 

read between 5 and 8% water content).  On the custom setting, the two sensor parameters b0 (offset 

parameter) and b1 (scaling parameter) were set to 1 and 6, respectively, in accordance with the 

operable value ranges outlined in the sensor manual (Delta-T Devices, 2005).  These parameters 

govern the conversion of the measured apparent dielectric constant of a given material to the water 

content.  

 To determine the volumetric water content (θ) of the 0-6 cm and 0-3 cm layers at each plot, 

four samples were extracted from the near-surface of each of the seven plots in 10 cm diameter PVC 

rings, two for the full depth (0-6 cm) and two for the partial exposure (0-3 cm) layer calibrations (for 

a total of 28 samples).  Samples were large enough in both cases to ensure that the probes were >2.5 

cm from the sides of the containers to prevent interference (Kellner & Lundin, 2001).  The 

experimental set-up is shown in Figure A-1 below.  Samples were slowly wet up to saturation over a 

period of 24 hours to minimize entrapment of air in pores.  Samples were weighed and concurrent 

sensor measurements were taken twice daily as samples dried with the aid of a fan.  At the end of the 

calibration, samples were dried at 80 °C until masses stabilized to determine the dry sample mass, 

and the dry sample and container masses were then subtracted from each total mass recorded to 

determine the mass of water in each sample at that time.  Gravimetric water contents were converted 

to θ by assuming that 1 g water = 1 cm3, and θ was then plotted against the sensor reading at each 

measurement.  Finally, a third-order polynomial function (Topp et al., 1980) was fit to the calibration 

data from each plot and layer.  The equation, along with plots and estimates of the parameters for 

each calibration, is shown in Figure A-2.  
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Figure A-2: Calibration curves for each plot for both 0-6 cm (top) and 0-3 cm 

(bottom) layers. Volumetric water content (θ) was approximated by a third-order 

polynomial equation, θ = ax3 + bx2 + cx + d, where x is the sensor reading and a, b, c 

and d are parameters estimated from the data.  Estimated parameter values are shown 

for each calibration at right. 

 

 

 

 

Figure A-1: Diagram showing experimental set-up used during the calibration of the 

WET-sensor for both full depth (0-6 cm layer) and partial exposure (0-3 cm layer) 

calibrations 

 

 

 

 



54 
 

Lysimeter Data and Priestley-Taylor Evaporation Coefficient Estimates  

 Evapotranspiration was estimated for each plot by relating the equilibrium evapotranspiration 

(ETeq), estimated using net radiation, air temperature and ground heat flux data recorded by a 

meteorological station at the site, with the actual evapotranspiration (ETa) over a given time period 

measured by a pair of weighing lysimeters.  This approach is known as the Priestley-Taylor method 

(Priestley & Taylor, 1972).  The slope of the ETeq – ETa relation, referred to as the alpha parameter 

(α), represents a multiplier coefficient that is applied to the seasonal ETeq to generate a calibrated 

plot-specific estimate of total seasonal evapotranspiration. Data used to generate plot α values are 

shown in Figure A-3 below.  The lysimeters were made out of buckets, approximately 22 cm in 

diameter by 30 cm depth, filled with peat-Sphagnum monoliths extracted from within a close vicinity 

of the study plots.  Water was added or removed, as necessary, following rain events or during 

extended dry periods to maintain near-surface water content in the lysimeters to within 5–10 percent 

of the average water content measured at a given plot.  ETa was taken as the average depth of water 

lost (determined from mass difference between readings, density of water, and lysimeter surface 

area) over the two lysimeters at each plot.  Measurement periods for ETa  ranged from roughly 12 to 

72 hours, and all measurement periods used for calculating α values contained no precipitation and 

had a measured difference in ETa of <30 percent between lysimeters at a given plot.  Two lysimeters 

were also installed in an area of bare cutover peat for comparative purposes. 
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Figure A-4: Plots of equilibrium evapotranspiration (ETeq) estimated from 

meteorological station data for a given time period against the actual 

evapotranspiration (ETa) measured over the same period at a given plot.  Alpha 

parameters (slopes) are shown for each plot, along with r2 values. 
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