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Résumé

Les tourbieres boréales des régions des sables bitumineux de I'Alberta sont soumises a de
vastes perturbations et a la pollution causée par 'industrie de 1'extraction in situ du pétrole et
du gaz. En méme temps, les tourbiéres sont reconnues comme des écosystémes avec
d'énormes capacités a stocker du carbone (C) qui ont besoin d'étre protégés en période
d'augmentation des émissions de gaz a effet de serre et de réchauffement climatique continu
d'origine anthropique. Depuis 2015, le gouvernement de I'Alberta a publié de nouvelles
réglementations visant a conserver et a protéger les tourbicres suite aux perturbations causées
par des infrastructures pétrolic¢res et gazicres in sifu, par une approche de la restauration d'une
« capacité fonciere équivalente ». Par conséquent, la restauration écologique réglementaire
des tourbiéres vise a rétablir les fonctions primaires des tourbieres, soient l'accumulation de
tourbe et la séquestration de carbone.

Les premiers essais de restauration des tourbieres dans ce contexte ont débuté au début des
années 2000 et jusqu'a ce jour, trés peu de recherches ont été menées a évaluer le succés des
différentes techniques de restauration. L'objectif de cette theése est donc 1'évaluation de
différentes techniques de restauration de tourbieres a la suite de perturbations de plateformes
de forage in situ, via I'évaluation des communautés végétales et des fonctions de la tourbiere
restaurée, en particulier le potentiel d'accumulation de tourbe et le retour de la séquestration
du carbone. Trois sous-objectifs étaient axés sur le développement des especes végétales
caractéristiques des tourbieres, la production et la décomposition de la matiére organique
végétale, la biogéochimie et la séquestration du carbone.

L'étude a eu lieu sept a dix ans apres la restauration. Les sites de recherche étaient deux
anciennes plateformes de forage in situ, situées dans les régions des sables bitumineux de
Peace River et de Cold Lake, dans le nord de 1'Alberta. Dans le cadre de cette ¢tude, nous
avons choisi cinq tourbiéres restaurées, une zone témoin non restaurée d’une ancienne
plateforme et 28 milieux humides de référence non perturbés. Les techniques de restauration
¢valuées comprenaient l'enlévement complet des matériaux de construction de la plateforme
de forage in situ (CR), I'enlévement partiel du remplissage minéral de la plateforme de forage
jusqu'a 15 cm (PR15) au-dessus du niveau de la nappe phréatique (WTL), jusqu'a 5 cm au-
dessus du WTL (PRSY), et jusqu'a prés du WTL de 1'écosysteme de tourbiére non perturbé
adjacent (PRO). La revégétalisation s'est faite soit spontanément par l'intermédiaire de la
dispersion naturelle des plantes, soit par la plantation active d'espéces vasculaires, en
particulier Carex aquatilis, Larix laricina et Salix lutea. Sur deux saisons de croissance, nous
avons mesur¢ 1'abondance, la diversité et la richesse des communautés végétales émergentes,
la productivité¢ primaire nette (PPN) et la décomposition, ainsi que 1'échange brut de
I'écosysteme (EBE) via I'échange de dioxyde de carbone (CO») et les émissions de méthane
(CHa4). En outre, nous avons mesuré¢ les facteurs environnementaux, tels que les niveaux
d’eau (WTL), la chimie du sol et de 1'eau et les concentrations de nutriments.

Pour I’approche de restauration CR, une zone d'eau libre peu profonde s'est formée avec des
especes aquatiques flottantes migrant spontanément et une végétation de type marais sur le
périmetre. On a observé que ces types de végétation étaient une source de C, ou le CHy était
libéré par les tissus d’aérenchyme bien développés de ces végétaux. La production de



biomasse et I'accumulation de tourbe ont été observées de fagon marginale, sauf dans un tapis
de mousse brune flottant. En conséquence, on a observé que 1’approche de restauration par
CR avait un potentiel de réchauffement global accru, en raison du bilan positif de C, ou plus
de C est libéré dans 1'atmospheére qu'il n'est absorbé par la pédosphere.

PR15 et PRS, qui ont fait I'objet d'introduction d'especes végétales, nous avons constaté que
la diversité et la richesse des especes €taient les plus faibles parmi les tourbicres restaurées.
Des conditions trop séches, avec un niveau d’eau trop profond sous la surface du sol, ont
transformé PR5 et PR15 en sources de carbone avec un potentiel de réchauffement global
accru, en raison de la libération de CO> dans l'atmospheére. La forte production de biomasse
a été neutralisée par un taux de décomposition tout aussi élevé et donc par un faible potentiel
d'accumulation de tourbe. Le développement des arbustes a eu un effet positif sur I'absorption
du carbone.

Nous avons observé que le PRO, qui a été spontanément revégétalisé par la migration
naturelle des diaspores, a développé une végétation plus similaire aux tourbicres de référence
avec une plus grande diversité et richesse d'especes végétales par rapport aux autres zones
restaurées. Une couverture dominante de bryophytes ou une végétation arbustive ont
contribu¢ a de meilleurs taux d’accumulation de tourbe par rapport aux autres zones d'étude.
Le WTL prés de la surface était un facteur significatif pour le retour d'une fonction de puits
de carbone dans cette zone restaurée (PRO).

Nous pensons que la restauration écologique de tourbiéres peut étre réalisée avec
I'élimination partielle du remplissage minéral. Les résultats suggerent que la connectivité
hydrologique avec les écosystemes de tourbieres adjacents non perturbés est le facteur
limitant le plus important pour le développement de communautés végétales caractéristiques
des tourbieres ou la restauration des fonctions d’accumulation de tourbe et d'absorption de
carbone. En outre, la proximité physique d’une banque de diaspores semble faciliter et
accélérer la migration naturelle spontanée de diverses especes végétales, méme sur un sol
minéral résiduel des anciennes plateformes de forage. L'introduction active de plantes ne s'est
pas avérée avoir des effets significatifs sur la diversification et l'enrichissement des
communautés végétales caractéristiques des tourbieres.
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Abstract

Boreal peatlands in the Oil Sands regions of Alberta are subject to vast disturbances and
pollution caused by the in situ oil and gas extraction industry. At the same time, peatlands
are recognized as enormous carbon (C) storing ecosystems that need protection during times
of enhanced greenhouse gas emissions and ongoing anthropogenically-caused global
warming. Starting in 2015, the Alberta Government released new regulations that aim at the
conservation and protection of peatlands following disturbance by in situ oil and gas
infrastructure via the restoration of an “equivalent land capability”. The obligatory ecological
restoration aims at the reestablishment of primary peatland functions, such as peat
accumulation and C sequestration.

First trials to restore peatlands following in situ oil sands well pad disturbances started in the
early 2000’s and until this day little research on the success of the various restoration
techniques has been done. The aim of this dissertation is therefore the evaluation of different
peatland restoration techniques following in sifu oil sands well pad disturbances, via the
assessment of the restored peatland’s vegetation communities and functions, in particular the
peat accumulation potential and return of C sequestration. Three sub-objectives focussed on
the development of peatland characteristic plant species, the plant organic matter production
and decomposition, the biogeochemistry and carbon sequestration.

The study took place seven to 10 years post-restoration. Research sites were two
decommissioned in situ oil sands well pads located in the Peace River and Cold Lake Oil
Sands regions in northern Alberta. For this study, we selected five restored peatland areas,
one unrestored control area of an in situ well pad, and 28 undisturbed reference wetlands.
The evaluation of the restoration techniques included the complete removal of the in situ well
pad’s construction materials (CR), the partial removal of the well pad’s mineral fill to 15 cm
(PR15) above the water table level (WTL), to 5 cm above the WTL (PRS), and to near the
WTL of the adjacent undisturbed fen ecosystem (PRO). Revegetation happened either
spontaneously via natural ingress or was managed by active planting of vascular species, in
particular Carex aquatilis, Larix laricina, and Salix lutea. Throughout the two-year study
period, we measured the abundance, diversity, and richness of emerging plant communities,
the net primary productivity (NPP) and litter decay, as well as net ecosystem exchange (NEE)
via carbon dioxide (CO;) exchange, and methane (CHs4) emissions. Furthermore, we
measured environmental factors, such as WTL, soil and water chemistry and nutrient
concentrations.

In CR, a shallow open water area had formed with mostly spontaneously colonizing floating
aquatic species and marsh-like vegetation in the periphery. This type of vegetation was
measured to be a C source, where CH4 was released via aerenchyma. Biomass production
and peat accumulation was observed marginal, except in a floating brown moss carpet. As a
result, CR was observed to have an enhanced global warming potential, due to the positive
C balance, where more C was released to the atmosphere than was taken up by the
pedosphere.

At PR15 and PRS, which were subject to plant species introduction, we found the lowest
species diversity and richness among restored peatlands. Too dry conditions, with low WTL
below the surface, turned PR5 and PR15 into carbon sources with increased global warming
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potential, due to the release of CO, to the atmosphere. High biomass production was
neutralized by an equally high decay rate resulting in low peat accumulation potentials. There
was a positive relationship between shrub cover and net carbon uptake.

We observed PRO, which was spontaneously revegetated by natural migration of diaspores,
to develop fen characteristic vegetation with the highest plant species diversity and richness
compared to other restored areas. Either dominant bryophyte cover or shrub vegetation
helped contribute to the greatest peat accumulation potential compared to the other study
areas. The WTL at the surface was a significant factor for returning a C sink function in the
same restored area.

Results indicate that the benefit of the complete removal of a former in situ oil sands well
pad is negligible, and that ecological peatland restoration can be achieved with the partial
removal of the mineral fill. Also, hydrological connectivity to undisturbed adjacent fen
ecosystems is the most important limiting factor for the development vegetation communities
characteristic of peatlands and resume peat accumulation and C uptake. Furthermore, the
physical proximity to the respective diaspore bank is believed to facilitate and accelerate
spontaneous natural migration of diverse plant species even on a residual mineral soil. Active
plant introduction did not prove to have significant effects on diversification and enrichment
of peatland characteristic plant communities.
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Introduction
Pertinence

The Canadian landmass is covered by roughly 12.5% peatlands, which make up 90% of the
country’s wetlands (Xu et al. 2018). Specifically, Canada’s boreal ecoregion is characterized
by approximately 1 136 million km? of peatlands within a vast mosaic of pristine conifer
forests and wetlands (Tarnocai 2006). In the province of Alberta, these wetlands coincide
with the world’s third largest oil reserves situated within the Western Canadian Sedimentary
Basin, called the Oil Sands regions of Alberta (Government of Canada 2019). Covering an
area of more than 140 000 km? and containing an estimated total of 166.3 billion oil barrels,
the Oil Sands regions are subject to extensive bitumen and natural gas mining operations to
satisfy the high demand for petroleum and energy (Orbach 2012; ABMI 2018; Government
of Alberta 2021b). Severe disturbances of natural ecosystems, particularly peatlands, are the

consequence.

Open surface mining of the oil sands, a mix of sand, water and heavy, sticky oil called
bitumen, is only feasible when deposits are located at surface-near depth up to 75 m and is
accountable for the degradation of approximately 953 km? surface area in the Athabasca Oil
Sands region as of 2019 (Government of Alberta 2019). A total of 4 890 km? is considered
open surface mineable land area (ABMI 2018). In situ (“in place”) extraction on the other
hand, is used to extract bitumen from depths greater than 75 m, while being responsible for
97% (approximately 138,000 km?) of the overall oil sands related disturbance in the region
(Schneider & Dyer 2006; Orbach 2012; Government of Alberta 2019). Bitumen deposits in
the Cold Lake Oil Sands on the border to Saskatchewan are located at 300-600 m depth, and
in the Peace River Oil Sands in the northwest of Alberta at 300-770 m depth, making in situ
mining the mandatory extraction method (Government of Alberta 2021b). /n situ mining
operations require a vast network of cutlines, access roads, mineral soil extraction pits,
exploration pads, in situ oil sands well pads, pipelines, processing plants, and storage
facilities for bitumen and crude oil. As a result, peatlands in the same regions are largely
impacted by fragmentation, drainage, pollution, and exploitation (Turetsky & St. Louis 2006;
Graf 2009; Brandt et al. 2013; Pasher et al. 2013; Strack et al. 2019).



Recognizing the serious magnitude of peatland degradation in the province, the Government
of Alberta released in 2013 the Alberta Wetland Policy to improve peatland protection,
conservation, management, and restoration in compliance with the Environmental Protection
and Enhancement Act (Government of Alberta 2013; Province of Alberta 2021). The
evaluation of emerging novel peatland restoration techniques following the disturbances

caused by in situ bitumen mining infrastructure is the subject of this study.

Besides an extensive infrastructure of connecting roads and pipelines, the main disturbances
caused by the in situ oil and gas industry are the construction of numerous in situ oil sands
well pads scattered across the boreal forest. As of October 2021, there are more than 157 000
active oil wells in the Peace River and Cold Lake Oil Sands regions of Alberta (Figure 0.1;
AER 2021). At the same time, there are an additional 172 000 inactive and abandoned wells
(Government of Alberta 2021a). Because the swampy ground needs to become stable and
firm to support the mining equipment, in situ well pads serve as a secure platform for
installing well heads, pumping jacks, and processing facilities on top the saturated peat.
During the construction of an in situ well pad, trees and larger shrubs are cut and left in place,
then all remaining vegetation is covered with a geotextile before a mix of mineral fill
containing loam, clay, sand, and gravel is placed and solidified. The thickness of the final
compacted mineral fill platform varies between 1.5 and 4 m (Figure 0.2). The well pads’
sizes depend on the number of well heads installed and range from a minimum of 1 ha to as
large as 4 ha (Figure 0.1). The average lifespan of an in situ oil sands well pad is about 20 to

30 years, before decommissioning and reclamation (CAPP 2021).
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Figure 0.1 In situ oil sands well pad made of compacted mineral fill situated within a mosaic of boreal forest and
wetland ecosystem. This well pad in the Cold Lake Oil Sands region is sized approximately 1.8 ha and supports
27 well heads, each one connected to an oil pump (“pumping jack”).
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Figure 0.2 Schematic cross section of an in situ oil sands well pad installed within a peatland ecosystem. The
well pad is made up of a compacted mix of loam, clay, sand, and gravel. The thickness of the mineral soil varies
between 1.5 m to 4 m in order to support the in situ bitumen extraction equipment despite the swampy ground
of saturated peat. In situ oil sands well pads are used to extract bitumen from deposits located at depth greater
than 75 m. In the Cold Lake Oil Sands bitumen deposits are situated about 300 to 600 m below-ground and in
the Peace River Oil Sands at depth between 300-770 m (Government of Alberta 2021b).



Definition and aim of ecological restoration

Ecological restoration is a rather new field of study, that has emerged during the last 40 years
with a quick increase of importance, as global anthropogenic pressure on natural ecosystems
intensifies (Charman 2002; Choi et al. 2008; Comin 2010). Ecological restoration has been
defined as “the process of assisting the recovery of an ecosystem that has been degraded,
reestablishment of the ecosystem’s characteristic functions and attributes prior to degradation
and the initiation of natural succession, to achieve complete self-sustainability and full

functionality (Clewell et al. 2004).

In order to satisfy individual management plans and divergent restoration objectives, other
comparable terms such as regeneration, rehabilitation, reclamation, and creation have been

developed (Table 0.1 Comparison and meaning of terms used for restoration methods and

Considering the example of ecological restoration of peatlands, differences occur in the
anticipated results and time frame for success of the various approaches (Figure 0.3).
Regeneration aims at the power of nature to restore itself as soon as we cease the interruption
and disturbance. This approach nurtures the development of some terrestrial ecosystem via
natural evolution during the time post-disturbance but does not target peatlands or wetlands
as the ultimate restoration outcome, although it can occur sporadically (Poulin et al. 2005).
In contrast, rehabilitation aims at restoring functional wetlands including a more
sophisticated and planned work effort in order to push the ecosystem succession in the
direction towards becoming a wetland. Rehabilitation efforts, however, might favor a
different, possibly non-native biota, and the reinstallation of a different wetland ecosystem
without the specific peatland ecosystem functions (Gann et al. 2019). Nevertheless, under
the right circumstanced, a rehabilitated wetland might someday become a peatland. In the
context of restoration following the in sifu oil mining activities in the Oil Sands regions,
rehabilitation is applied, using here the term reclamation instead. While reclamation has been

defined for restoration involving land-use change, reclamation in the context of oil sands



Equivalent land capability is defined as “the ability of the land to support various land uses
after conservation and reclamation similar to the ability that existed prior to an activity being
conducted on the land, but that the individual land uses will not necessarily be identical” but
instead have the same value, purpose, and qualities (Environment and Parks 2017).
Alternatively, ecological restoration precisely targets the development of a functional
peatland ecosystem as a goal within several years, depending on the severity of the
disturbance. An ecologically restored peatland is the product of an extensive restoration
working plan, precisely focusing on the ecosystem’s successional state prior disturbance. The
goal is to revive peatland functions and processes, and abiotic and biotic characteristics

within the years following the restoration (McDonald et al. 2016; Palmer et al. 2016).

Of the biota, only the flora will be considered in this research. Indigenous knowledge,
historical reports, and data from regional reference ecosystems help to obtain data on typical
indigenous vegetation species, plant functional groups and community structures (Temperton
et al. 2004). Specifically targeted peatland functions include water filtering, hydrological
connection, wildlife habitat, peat accumulation, and carbon sequestration (Rydin & Jeglum
2013). Throughout this dissertation, the simple englobing term restoration will be used as
equivalent for ecological restoration and all its synonyms, which we consider to be

interchangeable in this context (Clewell et al. 2004).



Table 0.1 Comparison and meaning of terms used for restoration methods and respective contexts, their aim

Restoration Restoration aim Restoration Context Source
method outcome
Ecological Reestablishment of the Peatland ecosystem Degraded, 1,2,4
restoration ecosystem’s characteristic damaged, or

functions and attributes prior destroyed

degradation ecosystem
Reclamation Establishment of an Various, non- In situ oil sands 1,3,4

»equivalent land capability”  identical but similar disturbances
land uses and
ecosystem functions

Regeneration Self-healing of the Terrestrial functional ~ Various 1,2
ecosystem ecosystem

Rehabilitation ~ Restoring functioning Wetland ecosystem Various 1,4
ecosystem succession at an (mineral or organic)
early state

Creation Establishment of the Artificially Open pit oil 1,2
ecosystem’s characteristic constructed peatland  sands mining

functions and attributes

* Undisturbed wetland oo :
Peatland or other wetland 3

Sholkow
opean

Funct
waobar

restored
Wetiond

icological distance

In sitv well pad

Time

Figure 0.3 Conceptual schema of diverse pathways that the different management approaches “natural
regeneration”, “rehabilitation/reclamation”, and “ecological restoration” may inflict on peatland ecosystem
restoration following in situ oil sands well pads disturbances over time. An ecologically restored peatland’s
processes and functions are comparable to those found in undisturbed reference peatlands. Other management
approaches may not lead to a full recovery of peatland functions and mineral wetlands form with unpredictable
peat accumulation processes, i. €. in a marsh, a swamp, or shallow open water.



In order to evaluate restoration success, Stander and Ehrenfeld (2009) argue that precise
definition of the anticipated restoration outcome(s) is needed, but too narrowly defined goals
might not reflect the entire spectrum of wetland development. In general, it is very difficult
to define the successional pathway and timeframe for wetland development and peatland
formation since this process is known to last several hundreds to thousands of years (Kuhry
et al. 1992, 1993; Halsey et al. 1998). In this context, the natural pathway also encompasses
the different states along the natural successional pathway post recovery of a natural
disturbance, such as fire, flooding, or drought. As a result, if the assessment period is too
short, the restored ecosystem might be unable to meet restoration goals that are too complex
and too narrowly defined (DeSteven et al. 2010). Accepting a variety of possible restoration
outcomes allows the acknowledgement of unpredictable dynamics and their consideration in

adjusting management plans, granting the ecosystem time to achieve its full potential.

Restoration approaches applied in the Alberta Oil Sands region

The peatland and wetland restoration work in the context of the Canadian oil and gas industry
began in the late 2000’s and is still developing and constantly improving. In order to learn
from trial and error, several different restoration approaches were tested following the severe
peatland disturbances by in situ oil and gas well pads, because solely the rewetting of
disturbed peatlands does not always lead to effective restoration of characteristic peat
properties and more reliable methods are needed for higher success rates (Kreyling et al.
2021). In accordance with the Environmental Protection and Enhancement Act and the
Alberta Wetland Policy’s focus on the conservation and restoration of disturbed peatlands,
the oil and gas industry adjusted their practices and implemented peatland reclamation in
their agenda (Alberta Environment 2008; CPP Environmental 2017). In this context, the aim
of peatland reclamation is to ensure functional processes similar to those prior disturbances,
including water storage/filtration, wildlife habitat, peat accumulation and carbon
sequestration (Environment and Parks 2017) and can therefore be considered restoration as

defined in Table 0.1.

One of the first studies of peatland restoration following in situ well pad disturbances in the

Canadian Oil Sands regions aimed at the initiation of fen ecosystems on residual mineral fill.



Following the decommissioning in 2000, the former well pad in the Peace River Oil Sands

had been seeded with Melilotus albus Medikus and M. officinalis (Linnaeus) Lamarck (

Figure 0.4B), while the peatland restoration starting in 2007 intended to mimic the processes
of paludification on mineral soil comparable to the first peatland formations following the
glacial era (Halsey et al. 1998; Vitt et al. 2011). The study included different restoration
approaches, combining the reduction in thickness of the mineral fill and revegetation. In order
to adjust the upper surface to the water table level of the adjacent bog and to reinstate
characteristic hydrological conditions of minerotrophic peatlands, the mineral fill was
partially removed and scraped down to 15 cm above the average water table level in one
study area, and to 4-6 cm above the average water table level in another study area (Figure
0.4C; Vitt et al. 2011; Koropchak et al. 2012). In both areas, several different soil
amendments, including the spread of a peat layer, were tested, in addition to plantings of
Carex aquatilis Wahlenberg, Larix laricina (Du Roi) K. Koch, and Salix lutea Nuttall (Vitt
etal. 2011; Koropchak et al. 2012). Three years post-restoration, the residual mineral fill that
was left in the ground following the partial removal restoration treatment effectively
supported the development of abundant C. aquatilis Wahlenberg communities, a
representative species for rich fen ecosystems, whereas the other soil amendments, including

peat, were observed to foster a high cover of undesired weeds (Koropchak et al. 2012).

In 2008, a study in the Cold Lake Oil Sands tested a restoration approach of aiming to
rehabilitate pre-disturbance conditions, in a treed rich fen ecosystem (Imperial Oil Resources
2017, personal communication). The restoration approach consisted of the complete removal
of the disturbance in combination with spontaneous revegetation via natural ingress from
nearby diaspores (Imperial Oil Resources 2017, personal communication). However,
unexpected severe compaction of the peat buried under the mineral fill created a depression
below the average table and a shallow open water area quickly formed in the depression

during ongoing restoration work (

Figure 0.4E). To avoid the development of shallow open water and instead support the fen
restoration, restoration work continued to only partially remove the upper surface layers of

the mineral fill to near the water table level. Hence, a residual mineral fill and the underlying



geotextile were left in place and in the end, two restoration approaches were tested in this
study, the complete and the partial removal of the mineral fill. Four years post-restoration,
the shallow open water area contained floating and emergent aquatic vegetation and
indicators predicted the succession towards a marsh ecosystem. Three years post-restoration,
the partial removal area supported approximately 36 to 95% vegetation cover dominated by

Typha latifolia L., Equisetum sp. L., Carex sp. L., and Salix sp. L..

In 2009, a study in the Peace River Oil Sands tested the restoration of a treed rich fen
vegetation community and a shrubby rich fen vegetation community on a partially removed
and remodeled former in situ oil sands well pad (Gauthier et al. 2018). Restoration work
included the partial removal of the well pad’s mineral fill following the technique applied by
Vitt and colleagues two years earlier (2011). A residual mineral fill of 20 to 25 cm remained
atop the underlying peat (Gauthier et al. 2018). Five substrate treatment were tested,
including 1) clay loam (residual well pad mineral fill), 2) decompacted clay loam, 3) sawdust-
clay mix, 4) decompacted sawdust-clay mix, and 5) peat. The revegetation was done
following the moss layer transfer technique (MLLTT; Quinty & Rochefort 2003), using
donor material from a shrubby rich fen and a treed rich fen (Gauthier et al. 2018). One
growing season post-restoration, the vascular plants covered 3 to 12%, while bryophytes
covered up to 58% of the study area. The bryophytes transferred from the shrubby rich fen
were observed to cover almost twice as much (58%), compared to the bryophytes transferred

from the treed rich fen (30%; Gauthier et al. 2018).

Starting in 2010, a study in the Cold Lake Oil Sands tested the restoration of a treed poor fen
vegetation on partially removed mineral fill mixed with the underlying well decomposed
peat, following in situ oil sands disturbances (Shunina et al. 2016). Several restoration and
plant introduction approaches were tested. Ground treatments included the removal of the
mineral fill except a layer of about 10 cm, which was then mixed with the underlying peat.
Soil modeling included a smooth soil treatment with a relief of up to 15 cm, and a rough
treatment with a relief of up to 1 m (Shunina et al. 2016). Revegetation treatments began in
2011 and incorporated first a modified MLTT (Quinty & Rochefort 2003), secondly a
spontaneous revegetation via natural ingress, and thirdly in 2012 the active transplantation

of Picea mariana (Miller) Britton, Sterns & Poggenburgh, Rhododendron groenlandicum
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(Oeder) Kron & Judd, and various unidentified sedge seedlings, which later developed into
abundant C. aquatilis Wahlenberg and C. utriculata Boott (Shunina et al. 2016). Two
growing seasons post-restoration, the tree and shrub transplants survival was lower than 20%,
while sedge transplants presented a survival rate of more than 98%. Populus tremuloides
Michaux and Beckmannia syzigachne (Steudel) Fernald were observed as abundant species

that had spontaneously migrated (Shunina et al. 2016).

In 2011, another study in the Peace River Oil Sands tested the restoration of a Sphagnum L.-
dominated vegetation on resurfaced peat following in situ oil sands well pad disturbances.
Restoration approaches incorporated in this study included the resurfacing of peat following
the complete removal of the mineral fill, the inversion of the underlying peat with a residual
mineral fill layer, and revegetation via the MLTT (Quinty & Rochefort 2003; Xu et al. 2021).
Revegetation methods follow the successful practice of peatland restoration following
cutover peatland disturbances in eastern Canada (Rochefort et al. 2003). Because the
hydraulic conductivity, physical and chemical properties of peat change when buried
underneath a solidified in situ mineral well pads (Daly et al. 2012), the leader of the project
(L. Rochefort) incorporated active groundwork and the use of an excavator to decompress
the exposed and resurfaced peat. One restoration approach had the former well pad’s mineral
fill completely removed, and the underlying peat exposed, mechanically decompressed,
remodeled to the same surface elevation as the surrounding peatland ecosystem, and
revegetated via the MLTT (Xu et al. 2021). In another restoration approach the upper layer
of the mineral fill was used to compensate the elevation difference due to peat compaction,
and the residual mineral fill was inverted with the underlying peat (i.e., it was buried under
peat, exposing peat at the surface), before decompaction and revegetation was done (Figure
0.4D; Xu et al. 2021). Three years post-restoration, the total vegetation cover (>65%) was
dominated by peatland characteristic vegetation (>63%), especially Carex spp. L., including

8% fen characteristic brown mosses, and more than 3% Sphagnum spp. L. (Xu et al. 2021).
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Figure 0.4 Schematic cross section of A) a pristine peatland before disturbance, in comparison to the B)
unrestored peatland disturbed by an decommissioned/ abandoned in situ oil sands well pad, and peatlands
restored via C) the partial removal of the mineral fill, via D) the inversion of the mineral fill and the underlying
peat, and via E) the complete removal of the former in situ well pad, where a shallow open water area formed
instead.

11



Peatland functions

Wetlands are defined as “land that is saturated with water long enough to promote wetland
or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation and various
kinds of biological activity which are adapted to a wet environment” (National Wetlands
Working Group 1997). Hydrology is the limiting factor for an ecosystem to become a wetland
with characteristic functions and processes. Suitable hydrological conditions support a
typical wildlife habitat for characteristic vegetation communities that provide the organic
matter content for peat accumulation and subsequent carbon (C) sequestration (Kroetsch et

al. 2011).

Differences occur between mineral and organic wetlands. Mineral wetlands, such as swamps,
marshes, and shallow open water, are characterized by generally circumneutral to alkaline
conditions, higher salinity and higher nutrient concentrations (National Wetlands Working
Group 1997). Mineral wetlands do per definition not accumulate substantial layers of organic
matter, although they can potentially accumulate peat layers thicker than 40 cm. On the
contrary, organic wetlands also known as peatlands, such as fens and bogs (Table 0.2), must
have a peat layer of at least 40 cm (National Wetlands Working Group 1997; Alberta
Environment and Sustainable Resource Development 2015). Peatlands have been observed
to accumulate significant peat layers of up to 10 m (National Wetlands Working Group 1997;
Alberta Environment and Sustainable Resource Development 2015). Ongoing peat formation
in waterlogged conditions is essential for the CO» uptake from the atmosphere via
photosynthesis of peatland vegetation and continuous C sequestration within the peat layers.
Hence, due to the different goals of the various restoration approaches that were discussed
earlier, there is an importance to focus specifically on restoration efforts that revive peatland

functions, particularly when the pre-disturbance ecosystem was a peatland.
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Habitat

Peatland ecosystems provide habitat for characteristic plant species, specifically
hydrophytes, species adjusted to wet conditions that either merely tolerate or have well
adapted to the extreme conditions found in wetlands (Rydin & Jeglum 2013). In fact, the
hydrology is considered to be the base for the ecological structures in peatlands and their
respective functions and processes (Richardson et al. 2016). A peatland’s soil quality, plant
species composition, and vegetation productivity are impacted by the climatic factors such
as precipitation rate and temperature (Bernard et al. 1988; Breeuwer et al. 2008; Jassey et al.
2013; Churchill et al. 2015; Mékiranta et al. 2018) and are limited by the availability and
composition of nutrients (Craft & Richardson 1997). Compared to bogs, which are habitat to
few characteristic species, fens have in general higher and more variable water tables, higher
minerotrophic concentrations and therefore their vegetation is composed of a wide variety of
communities with variable vascular and bryophytes species (Succow & Joosten 2001;
Warner & Asada 2006). The scientific names of plant species mentioned in this thesis follow
the Integrated Taxonomic Information System (IT IS 2021) and the Consortium of North
American Lichen Herbaria (CNALH 2021).

Bogs are known to be ombrogenous, oligotrophic and rather acidic ecosystems.
Ombrogenous peatlands are disconnected from the upwelling or lateral below-ground water
flow and depend on precipitation for water supply and nutrient input from the atmosphere. A
continental bogs’ vegetation composition is dominated by various bryophyte species,
ericaceous shrubs, cottongrass (Eriophorum ssp. L.), and coniferous trees, predominantly
black spruce (Picea mariana (Miller) Britton, Stern & Poggenburgh). Dominant bryophytes
found in bogs are abundant peat moss species, like Sphagnum capillifolium (Ehrh.) Hedw.,
S. medium Limpr., and S. fuscum (Schimp.) H. Klinggr., and few brown moss species, such
as Hylocomium splendens (Hedw.) Schimp., Pleurozium schreberi (Willd. ex Brid.) Mitt.,
Pohlia nutans (Hedw.) Lindb., and Polytrichum strictum Menzies ex. Brid. (Vitt & Liith
2017). Prominent ericaceous shrubs are Rhododendron groenlandicum (Oeder) Krohn &
Judd, Chamaedaphne calyculata (Linnaeus) Moench, Empetrum nigrum L., Kalmia polifolia
Wangenheim, and Vaccinium spp. L. (Zoltai et al. 1988).
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In contrast, fens are minerogenous ecosystems that are connected to a gradual, slow moving
lateral and surface or upwelling groundwater flow (Alberta Environment and Sustainable
Resource Development 2015). The transport and exchange of nutrients and minerals from
neighboring ecosystems and the underlying geology is the reason for the chemical variability
of fens from oligotrophic to eutrophic (Ducks Unlimited Canada 2011). As a result, fens
support much more diverse plant species communities compared to bogs. Dominant vascular
species include sedges like Scirpus ssp. L., Carex ssp. L. and Eleocharis ssp. R. Brown, forbs
like Caltha palustris L., Comarum palustre L., and Menyanthes trifoliata L., as well as trees
and shrubs, such as L. laricina (Du Roi) K. Koch, Betula pumila L., Myrica gale L., and Salix
spp. (Zoltai et al. 1988; Alberta Environment and Sustainable Resource Development 2015).
Characteristic bryophyte species include mostly brown mosses, such as Drepanocladus spp.
(Miill. Hal.) G. Roth, Scorpidium scorpioides (Hedw.) Limpr. or S. cossonii (Schimp.)
Hedenés, Campylium stellatum (Hedw.) C.E.O. Jensen, Calliergon spp. (Sull.) Kindb., and
Tomentypnum nitens (Hedw.) Loeske (Vitt & Liith 2017). We focus in particular on the
characteristic fen vegetation composition and the dominant fen plant species as a key
component of peatland ecosystems, to evaluate the outcome of the peatland restoration

approaches in the course of this research.

Peat accumulation

Peat is a histosol and is defined as a soil with more than 30% organic matter content (Lindsay
& Andersen 2018). The high organic matter content builds up due to reduced decomposition
of the plant litter in waterlogged, constraining conditions. Peat can undergo varying degrees
of decomposition from fibric, low degree of decay with visible residual plants or parts of
plants, to hemic, medium degree of decomposition with only recalcitrant plants and parts of
plants still visible, and sapric, high degree of decay without visible differentiation of plants
possible (Clymo 1983). Considering the simplest model, a peatland’s peat body can be
separated into two functional layers, the upper, occasionally aerated acrotelm and the lower,
constantly waterlogged catotelm (Ivanov 1953; Ingram 1978; Morris et al. 2011). The
acrotelm is characterized by less humified fibric to hemic peat and is situated in the perimeter
of the changing water table level. The catotelm remains continuously inundated and contains

mostly hemic to sapric peat due to ongoing slow decomposition, which is hampered by

15



oxygen deprivation and low temperatures. Waterlogged conditions delay the rate of decay
and enable peat accumulation, but there is no linearity between peat accumulation and soil
moisture or rather water table level (Gallego-Sala et al. 2018). Instead, the water table is
known to be limiting the migration, composition, and survival of peatland characteristic plant
species which are the essential organic matter input for peat accumulation (Murphy & Moore
2010; Wagg et al. 2017; Mékiranta et al. 2018; Bengtsson et al. 2021). In fact, the peat
accumulation potential of wetlands with high water table levels and distinctive water table
fluctuations, i.e., shallow open water and marshes, is influenced by many factors, such as
quality of plant litter, aeration, or nutrient access for microbes (Thormann et al. 1999;

Kreyling et al. 2021).

A peatland’s net primary productivity (NPP; the difference between the gross primary
productivity and plant respiration) of characteristic vegetation communities dictates the
biomass input, which in turn is needed for peat accumulation. Besides the coverage of the
characteristic peatland plant functional types, like trees, shrubs, herbs, and bryophytes,
differences in peat accumulation rate occur among peatland types. Peat deposits in
undisturbed bogs have been observed to be especially rich in Sphagnum-litter (about 50%),
while the remaining portion of organic litter (necromass) is added by all other plant functional
types combined (Turetsky 2003). Fine root production of vascular bog plants has been
observed to be as much as 38% in hummocks and 59% in lawns of the total vascular primary
production (Backéus 1990). The recalcitrancy of the perennial species characteristic to bogs
has been observed to serve a higher peat accumulation, than the higher decay rate of
necromass from herbaceous plants and brown mosses in rich fens (Thormann et al. 1999;
Vitt & Wieder 2008; Konings et al. 2019). In fens, most of the tissue found in peat samples
has been observed to be from highly productive herbaceous fen plants, especially sedges, as
2003). The large contribution of herbaceous species is due to the annual die back of the entire
aerial biomass at the end of a vegetation period in addition to the considerable below-ground
root necromass (Saarinen 1996), while in contrast the perennial shrubs and bryophytes aerial
biomass contributes only the annual die back of leaves and inflorescence, and the subsurface

fine root necromass (Bona et al. 2018; Bérubé & Rochefort 2018; Schwieger et al. 2020).
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The decomposition process in peatlands is retarded due to recalcitrant plant organic matter,
cool, acidic and anoxic conditions because of surface-near water table levels (National
Wetlands Working Group 1997; Mitsch & Gosselink 2015; Joosten 2016). Decomposition is
limited by the quality of plant litter, where the lower the litter quality, with high contents of
cellulose, lignin and tannin, as it is found for instance in recalcitrant ericaceous shrub species
or Sphagnum sp. L., the slower it will decompose (Hajek 2009; Rydin & Jeglum 2013).
Hence, peat accumulation is higher in the ombrotrophic, acidic bogs, with litter input from
slow decomposing plant species including litter from ericaceous shrubs and Sphagnum
mosses (Turunen & Moore 2003; Andersen et al. 2013). Decomposition rates of boreal
peatlands have been observed to vary from 17% in bogs, and 31% in treed moderate-rich fens
during the first year of study (Bayley et al. 2005). Gorham and colleagues (2012) estimated
that North American peatlands accumulate peat at a yearly average rate of 0.43 mm. The
difference between NPP and mass loss via decomposition allows us to estimate the amount
of carbon accumulating within the peat layers. As the peat accumulation and carbon
sequestration are key factors of functional peatland ecosystems, a part of this research focuses

on the organic matter accumulation.

Carbon cycle and sequestration

Peatlands are known to be enormous carbon (C) sinks if left undisturbed. Canadian peatlands
alone are estimated to store 154 Gt* C, which is equivalent to 60% more C stored in peatlands
than in forests (Tarnocai 1998; Roulet 2000). The Canadian peatlands of the boreal region
alone are estimated to store approximately 99 Gt C (Tarnocai 2006). In spite of this, if these
ecosystems are disturbed and their characteristic functions interrupted, peatlands may
become carbon sources, releasing more carbon to the atmosphere than is being stored.
Degraded peatlands may cover only approximately 0.3% of the global land area, but the
ongoing degradation proceeds at a loss rate of 5000 km*yr (Joosten 2016). Disturbed
peatlands are responsible for 5% of the global anthropogenically induced carbon dioxide
(CO») emissions (Joosten 2009). With the goal to reduce emissions of greenhouse gases,

specifically the potent CO> and methane (CH4) and to mitigate global warming, the conserva-

*One gigaton (Gt) is equal to one petagram (Pg) or 10" gram (g) and will be used
interchangeably in this dissertation.
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tion and ecological restoration of peatlands have been identified to be effective tools to

increase the peatlands’ health and their C sink function (IPCC 2014).

The total C uptake rate, the net ecosystem production (NEP), of a natural northern bog is on
average 20 to 30 g C m?2 yr'! (Strack 2008). The C accumulation rate differs across the
earth’s eras, being highest during the time following the glacial era, when peatlands first
started forming in the Western Canadian region approximately 8 000 to 9 000 BP at a rate of
38 g C m2 and lowest 2 000 to 3 000 BP at a rate of 5.6 g C m™ (Yu 2012). During the last
millennium, the C accumulation rate was approximately 10.4 g C m? (Yu 2012). However,
long-term studies during current times, contradict the last millennia’s uptake rate and reveal
an average C uptake rate of 32.3 g C m2 (Yu 2012). These large variations illustrate the
importance of long-term studies to fully understand the ecological processes within

peatlands, as large seasonal, annual, and even millennial differences are evident.

The C cycle depicts the net ecosystem exchange (NEE) of C uptake and release through
greenhouse gas exchange, such as CO; and CHg4, between the atmosphere and the biosphere,
and loss via ground water flow in form of dissolved organic carbon (DOC; Figure 0.5). The
biosphere includes the vegetation and microorganisms that live in the pedosphere and make
up the organic matter of the soil through decomposition. Relative C fluxes of a northern
peatland may vary each year, depending on climatic factors, environmental conditions and
also vegetation response. We use the meteorological sign convention, where C uptake values
are negative since the flow is from the atmosphere to the biosphere. Several studies
demonstrate that over a long-term observation period, an undisturbed, functional northern
peatland is capable of long-term C accumulation where the C sink is represented by a
negative NEE and despite occasional years of C being released, represented in a positive
NEE (Moore et al. 2002; Bubier et al. 2003; Ward et al. 2009). NEE is the sum of gross
ecosystem productivity (GEP) and ecosystem respiration (Reco). GEP is the C flow from the
atmosphere to the biosphere happens in form of CO; uptake by plants via photosynthesis.
Ecosystem respiration is the release of CO, and CHs via decomposition, respiration,
oxidation, and ebullition. Functional northern peatlands may take up more than 220 g CO, m

2 yr'! and release up to 310 g CO, m2 yr'! (Strack et al. 2008).
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Figure 0.5 Schema of a northern peatland’s carbon (C) cycle. C sequestration is the sum of C uptake and
release, in form of the major greenhouse gases carbon dioxide (CO,) and methane (CHa), known as net
ecosystem exchange (NEE). C uptake, the gross ecosystem productivity (GEP), happens via photosynthesis,
where plants absorb CO, from the atmosphere. While CO; is released to the atmosphere, via ecosystem
respiration, respiration of plants and microorganisms, CHsis produced in the anaerobic soil and released via
oxidation or ebullition. CH4 emissions are observed to increase in inundated conditions and are much affected
by temperature, precipitation, and land management. Some carbon is lost through the export of dissolved
organic carbon (DOC) via the ground water flow. Rates of nitrous oxide (N2O) are not considered in this study.

For the purpose of climate reporting, the global warming potential (GWP) is an index
designed to compare the greenhouse gases’ potential to contribute to the warming of the earth
climate (Allen et al. 2016). COz is the reference for the GWP of greenhouse gases, therefore
it has the GWP coefficient of 1. CH4 on the other hand does not stay in the atmosphere as
long as CO», but it has a much higher energy absorption, which is represented in a GWP
coefficient of 28-36 over a 100-year time period, depending on the prediction scenario
(Strack et al. 2008; Allen et al. 2016). In this thesis the cautious GWP coefficient of 28 is

considered for calculations of the ecosystem GWP including data on CH4 emissions.
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Research objectives

This research study came to life at a time when the Canadian oil and gas industry and
ecological scientists and biologists became partners to find practical solutions for feasible
peatland restoration in the wake of a new law to conserve and protect wetlands in the province
of Alberta. The main objective of this dissertation is to evaluate a variety of tested fen
restoration methods that aimed to return characteristic peatland functions, such as habitat for
peatland plants, peat accumulation, and C sequestration, following in situ oil sands well pad
disturbances. This study aims to draw helpful conclusions from the past ecological restoration
of peatlands impacted by in situ oil sands well pads, and to develop suggestions for improving
the outcome and viability of future ecological peatland restoration works to be accomplished

by the oil and gas industry.

Two study sites had been selected in the Peace River and Cold Lake Oil Sands regions, where
the complete removal of a former in situ well pad had been tested, as well as different
adaptations of partial removal of the mineral fill, and different revegetation methods were
applied. Three sub-objectives help to evaluate the overall restoration outcome of each
restoration method by assessing the functionality of the vegetation communities, the carbon
sequestration, and the peat accumulation, impacted by the site-specific biochemistry and

hydrological connection following the corresponding mineral fill removal.

The first sub-objective aims to evaluate the success of ecological peatland restoration by
comparing the vegetation communities and the biochemical conditions of the restored
peatlands to an unrestored decommissioned well pad and to undisturbed reference wetlands
(Figure 0.6). The vegetation development was considered to be influenced by the mineral fill
removal which induced the hydrological conditions, which in turn induced the biochemical
conditions. Vegetation surveys and water (or peat) sampling were done during two growing

seasons. The first sub-objective is addressed in Chapter 1.
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Figure 0.6 Conceptual schema of the first sub-objective concentrates on the development of vegetation
communities in ecologically restored areas following in situ oil sands well pad disturbances. Independent factors
influencing the vegetation development is first of all the management of the mineral fill removal inducing the
hydrological conditions and ultimately the biochemical conditions,
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The second sub-objective aims to evaluate the ecological restoration success by assessing the
carbon (C) sequestration function and the resulting global warming potential of the restored
peatlands as compared to the unrestored former well pad and undisturbed reference peatlands
(Figure 0.7). C sequestration was calculated according to the rates of methane (CH4)
emissions and net ecosystem exchange (NEE) in the respective vegetation communities of
the study sites. NEE was measured via carbon dioxide (CO.) uptake and release during two
growing seasons. Vegetation communities were considered to be influenced by the mineral
fill removal inducing the hydrological and biochemical conditions. The second sub-objective

is addressed in Chapter 2.
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Figure 0.7 Conceptual schema of the second sub-objective, which focuses on the carbon (C) sequestration
function of restored areas, which was assessed via measurements of carbon dioxide (CO,) exchange and
methane (CHa4) emissions in restored areas, which then allowed us to calculate the ecosystem GWP of the
restored areas. Influencing factors are the mineral fill removal approach, affecting the hydrological connection,
the development of specific biochemical conditions, and the development of characteristic vegetation
communities in each study area
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The third sub-objective aims to evaluate the success of the ecological restoration to reinstate
functional peat accumulation in restored peatlands, compared to an unrestored former well
pad and undisturbed reference peatlands (Figure 0.8). The peat accumulation potential was
calculated according to the estimates of above-ground and below-ground net primary
production (NPP) and plant litter decay in the study areas, during a two-year study period.
The mineral fill removal was considered to induce the hydrological and biochemical
conditions, that are stimulating the respective plant communities. The third sub-objective is

addressed in Chapter 3.

= Undisturbed wetland e ;
Organic wetland i

MNet
. primary
production |

| Plant lither
decomposition

Peat
occumulalion
paotential

Vegetation Biochemical Hydrological Mineral fill
community conditions connachion removal

Time

Figure 0.8 Conceptual schema of the third sub-objective that addresses the peat accumulation function of
restored peatlands, which is the product of net primary production and plant litter decomposition. Influencing
factors are the mineral fill removal approach, affecting the hydrological connection, the development of specific
biochemical conditions and the development of characteristic vegetation communities in each study area.

The general Conclusion presents main findings across all three studies and aims to give

recommendations for future fen restoration practices on in situ oil sands well pads.
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Chapter 1 Reestablishment of peatland vegetation
following surface levelling of decommissioned
in situ oil mining infrastructures

Meike Lemmer, Bin Xu, Maria Strack, Line Rochefort

1.1 Résumé

La restauration des tourbiéres, suite aux activités d'extraction du pétrole dans les régions des
sables bitumineux de 1'Alberta, vise a rétablir les fonctions cruciales des tourbiéres comme
I'habitat de la faune et de la flore. Des conditions anoxiques, caractéristiques des milieux
humides, sont nécessaires pour soutenir I'établissement et la croissance de la végétation. Dans
ce contexte, nous avons évalué l'efficacité de quatre techniques de restauration de tourbieres,
et évalué la richesse et la diversit¢ de la composition des espéces végétales, la qualité
biochimique du substrat et I'écohydrologie. Les résultats ont été comparés a une zone non
restaurée ainsi qu’a 28 milieux humides de référence non perturbées (REF). Dix ans apres la
restauration, la couverture végétale totale moyenne est de 57% dans les tourbieres restaurées,
contre 68% dans les REF, avec une contribution des especes caractéristiques des tourbicres
de 61 et 100% respectivement. Dans les zones restaurées, en moyenne 35 espéces de plantes
vasculaires et de bryophytes ont été enregistrées contre 64 espéces dans le REF. L'enlévement
complete d'une ancienne plateforme de forage a entrainé la formation d'une zone d'eau libre
peu profonde alors que l'enlévement partielle du remblai minéral et le raccordement de la
surface aux tourbiéres adjacentes non perturbées ont permis d'obtenir une nappe phréatique
proche de la surface et la plus grande diversité d'espéces végétales de tourbicres.
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1.2 Abstract

Peatland ecosystem restoration following oil mining activities in Alberta, Canada, aims at re-
establishing crucial peatland functions, such as wildlife habitat, water storage and filtration,
peat accumulation and carbon sequestration. To reinstate peatland functions, characteristic
hydrological conditions are necessary to support the establishment and growth of
characteristic wetland vegetation. Following in situ oil sands well pad disturbances in the
Peace River and Cold Lake Oil Sands regions in Alberta, we evaluated the efficiency of
peatland restoration approaches including different groundwork and revegetation techniques.
Groundwork techniques included the complete removal (CR) or partial removal (PR) of the
former in situ well pads’ mineral fill and revegetation included the spontaneous revegetation
via natural ingress of diaspores from nearby peatlands, or managed revegetation via planting
of Carex aquatilis, Larix laricina, and Salix lutea. We assessed the plant species composition,
biochemical and hydrological properties of all study areas, including restored peatland areas,
an unrestored area and reference areas (REF) for comparison. Ten years post-restoration, in
the restored areas the mean total plant cover was 57% with an average of 35 vascular plant
and bryophyte species, while in REF 68% mean total plant cover and an average of 64 plant
species were recorded. Respectively, characteristic peatland species contributed with 61 and
100% to the species composition. PR and hydrological connection to the adjacent peatland
resulted in surface-near water table and highest peatland plant species diversity, while the
CR promoted the formation of a shallow open water area.
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1.3 Introduction

The Canadian province of Alberta is characterized by 20% of extensive, pristine wetland
ecosystem mosaics, 90% of which are peatlands that cover approximately 119 000 km?
surface area (Government of Alberta 2013). Peatlands store large amounts of soil organic
carbon and are therefore recognized for their carbon sequestration function and climate
regulating capacity, highlighting the importance for their conservation and restoration to help

our fight against global warming (Joosten et al. 2012; Reed et al. 2014; Harenda et al. 2018).

In northern Alberta, peatland ecosystems have been disturbed by anthropogenic
development, predominantly the in situ oil and gas industry (Israel et al. 2020; Rooney et al.
2012). The operation of in situ oil and gas well pads is essential for the bitumen extraction
from deposits located at more than 75 m below the ground. The well pads are sized 1 to 4 ha
and require vast interconnected infrastructures of access roads, pipelines, processing and
storage facilities. As of 2016, the human footprint of the oil and gas sector adds up to
approximately 39 000 km? (ABMI 2018). Further development is to be expected, as a total
land area of 79 000 km? have been leased to in situ oil sands operators as of November 2021,
and the in situ mineable area covers nearly 140 000 km? in total (Moorhouse et al. 2010;
ABMI 2018). The in situ well pad construction in a peatland requires the cutting of trees and
tall shrubs, covering of the remaining ground vegetation with a geotextile, and the
introduction of a solid 1.5 to 4 m thick platform of mineral fill material mixed of clay, gravel,
sand, and loam. The construction may cause nutrient enrichment of surrounding areas and
compaction of the ground surface beneath the well pad, resulting in pollution and changes in
the peatland ecohydrology and soil properties (Graf 2009; Wood et al. 2016). Following an
average operation period of about 20 years, the well pad reclamation and peatland restoration
is obligatory (Environment and Parks 2017). The Alberta Government released a policy in
2013 to guide the conservation, protection, management, and restoration of peatlands,

acknowledging their ecological importance (Government of Alberta 2013).

The first peatland restoration approaches following in sifu oil sands well pads disturbances
were inspired by the natural peatland initiation during following the glacial retreat during the
early Holocene (Yu et al. 2003; Vitt et al. 2011; Environment and Parks 2017). The peatland

restoration approaches aim at repeating the processes of paludification and primary
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succession of peatland characteristic vegetation communities. Holocene peatland initiation
began via terrestrialization, the accumulation of organic matter and peat formation in shallow
waterbodies, and paludification, the formation and further development of peat layers in
terrestrial ecosystems taking place mostly on basal clay material, the reminiscent, sedimental
mineral soil from glacial transportation and retreated glacial rivers (Halsey et al. 1998;
Joosten & Clarke 2002; Gorham et al. 2007). The early establishment of vegetation on new
substrates and subsequent dynamics, known as primary succession, and species assembly,
are influenced by and feedbacks on the peatland’s hydrological regime (Vitt 1994; Large et
al. 2007; Waddington et al. 2015). Vegetation communities, their specific structure of plant
functional types and characteristic species composition, are key factors for assessing the
restoration success (Del Moral et al. 2007; Hobbs et al. 2007). Limited field trials have shown
successful establishment of peatland vegetation on decommissioned well pads in a process
similar to paludification (Vitt et al. 2011; Gauthier 2014). However, the efficacy of well pads

restoration in peatland remains understudied and poorly documented (Graf 2009).

Our study aims to fill this gap in knowledge using former in situ oil sands well pads that were
subject to different peatland restoration approaches in the recent past (Vitt et al. 2011;
Lemmer et al. 2020). We assessed three restoration approaches that tested different
treatments of groundwork, either the complete removal (CR) or the partial removal (PR) of
the mineral fill, and revegetation, either spontaneous revegetation or active planting of fen
plant species (Vitt et al. 2011; Lemmer et al. 2020). Three objectives were defined to evaluate
the restoration approaches: O1) To assess if the active reintroduction of characteristic plant
species necessary to facilitate the establishment of peatland vegetation communities; O2) To
assess which level of the mineral fill surface and distance to the water table best promote the
recovery of fen characteristic plant species; O3) To assess if a residual mineral fill negatively
affects the biochemistry and inhibits the recovery of peatland characteristic plant species
composition. Following these three objectives, we aim to answer the following two research
questions: Q1) How do the vegetation communities differ between the study areas? Q2) How
do the environmental conditions differ across the study areas and which environmental
factors contribute to the development of peatland vegetation? To answer these questions, we
compared the restored areas, with reference areas and an unrestored control area, regarding
plant species composition, the species’ richness, and environmental variables.
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1.4 Methods

1.4.1 Study sites

The study sites included two decommissioned in situ oil sands well pads and several larger
reference wetland complexes in the Peace River and the Cold Lake Oil Sands regions in
Alberta (Figure 1.1; Lemmer et al. 2020). If different reference wetland sites were located
in one vast wetland complex but differed in terms of peatland typology, they were considered

different reference wetland areas.
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Figure 1.1 Location of all study areas within the dry and central mixedwood ecoregions of the boreal forest in
Alberta, Canada. All study areas are located within the Peace River and Cold Lake Oil Sands regions. The
restored areas and unrestored control area are situated at two decommissioned in situ oil sands well pads, which
were subject to trials of different peatland restoration approaches. Six designated comprehensive reference
areas combine 28 reference area sites, which were located within several vast peatland complexes.
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Restored study areas

The study areas where restoration measures have been applied more than eight years prior
this study are still in the process of restoration but are here labelled “restored areas”. In 2017,
ten years post restoration, we selected two restored study areas on a decommissioned in situ
well pad in the Peace River region: partial removal of well pad’s mineral fill to 15 cm above
the water table (PR15) and partial removal to 5 cm above the water table (PRS; Figure 1.2;
Table S1; Lemmer et al. 2020). Vitt et al. (2011) and Koropchak et al. (2012) describe the
restoration and revegetation method, where the mineral fill was graded down to near the
water table and active planting of Carex aquatilis, Larix laricina and Salix lutea reintroduced
characteristic fen plant species. PR15 was characterized by abundant Calamagrostis
inexpansa and C. aquatilis, with a low cover of L. laricina, S. planifolia and S. pyrifolia,
while the average water table level was at 16 cm below the surface. PR5 was dominated by
C. aquatilis, while some S. planifolia and S. exigua were present, and the average water table

level was at 1 cm above the surface.
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Figure 1.2 Schematic cross section and traits of five restored areas and the unrestored control area (UNR).
Restoration approaches tested the partial removal (PR) and complete removal (CR) of an in situ well pad's
mineral fill. Restoration approaches shown are PR15: PR to 15 cm above the water table level (WTL); PR5: PR
to 5 cm above the WTL; PROE: PR to the same level (0 cm) as the WTL (even, without microforms); PRO: PR
to the same level (0 cm) as the WTL (differences occur between dry and wet microforms); CR: CR of the mineral
fill and the underlying geotextile (differences occur between the shallow open water area, and the floating brown
moss carpet).

Also in 2017, three restored study areas were selected on a decommissioned in situ well pad

in the Cold Lake region, eight to nine years post restoration: complete removal of the well

pad’s mineral fill and the underlying geotextile (CR), partial removal of the mineral fill and

levelling with the adjacent peatland to connect to its water table level (0 cm) with wet and

dry microforms (PR0), and partial removal and levelling to 0 cm with even ground (PROE;

Figure 1.2; Appendix 1.1; Lemmer et al. 2020). CR is characterized by a shallow open water
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area with a water table level of 47 cm above the surface where mostly floating aquatic
vegetation and some 7. latifolia grow at the water’s edge. In CR, a floating brown moss
carpet with a water table level at the surface and very few small shrubs and sedges are present.
In PRO the water table varied between the microforms, but averaged at 18 cm above the
surface, and abundant stands of Salix sp., T. latifolia, C. aquatilis, and Eleocharis palustris
had developed. In PROE a dense brown moss ground cover and abundant 7. latifolia,
C. aquatilis and Equisetum spp. dominated the vegetation, while the water table level was at

2 c¢cm below surface.

Unrestored study area

The here designated “unrestored” control area (UNR) was left for natural regeneration and
underwent no restoration or reclamation treatment following the decommissioning. UNR was
selected in 2017 at the decommissioned Cold Lake well pad (Appendix 1.1; Lemmer et al.
2020). UNR was dominated by upland species including Poa ssp., Trifolium hybridum,
Campylium stellatum, and Hamatocaulis vernicosus, and the average water table level was

27 cm below the surface (Figure 1.2).

Reference wetland study areas

In 2018, we surveyed 10 reference sites, while 18 supplementary reference sites had been
surveyed during two previous studies done in 2011 and 2016 (Gauthier 2014; Guéné-
Nanchen 2018; Appendix 1.1). All 28 surveyed reference sites were part of larger peatland
complexes located in the same geographical ecoregions as either Peace River or Cold Lake
(Figure 1.1, Appendix 1.1). Both ecoregions were subject to extensive anthropogenic
development. Given the constraints of field safety and logistical considerations, areas with
an active peat layer and reasonable access were selected, excluding areas with visible major
human impact. The reference sites were grouped into the six broad classes, based on water
table level (WTL; Fig. S1), soil and water chemistry (Appendix 1.3 & Appendix 1.4), that
served in this study as designated reference areas (REF): marsh (M), graminoid rich fen
(GRM), shrubby rich fen (SRF), wooded rich fen (WRF), shrubby poor fen (SPF), wooded
bog (BOG; Figure 1.3). The groups of REF were formed using the ‘cascadeKM’ function

for K-means clustering with the Calinski-Appendix 1.lan optimal number of groups,
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including data on environmental factors and plant species abundance (Calinski & Harabasz
1974; Oksanen et al. 2019; Figure 1.2). To avoid an emphasis on abundant species and a
subsequent skewed Euclidean distance (Borcard et al. 2018), a Hellinger transformation was
applied on the complete vegetation datasets, using the ‘decostand’ function. Reference area
groups were verified with the respective definitions by the Alberta Wetland Classification

System (Alberta Environment and Sustainable Resource Development 2015).
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Figure 1.3 Schematic cross section and traits of six reference areas by means of plant species composition, soil
and water chemistry following Alberta Environment and Sustainable Resource Development (2015). Reference
areas shown are M: Marsh; GRF: Graminoid rich fen; SRF: Shrubby rich fen; WRF: Wooded rich fen; SPF:
Shrubby poor fen; BOG: Wooded bog.

1.4.2 Experimental design

In each study area, five survey plots were randomly selected by aimlessly tossing a survey
frame. At each survey plot we estimated vascular plant cover in one 1 m? survey frame (n=5)
and bryophyte cover in four nested 25 x 25 cm survey frames (n=20; Appendix 1.1). In the
unrestored and restored areas one water sample (n=3) and one soil grab sample (n=3) were
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taken at three measurement plots that had been already installed for related studies described
in Lemmer et al. (2020). In the REF, water and soil samples were taken at survey plot 1, 3,
5. At the same sample plots, we measured water table level (WTL) and soil temperature at

5 cm depth (ST5). The experimental design, and the sampling and analysis methods applied

1.4.3 Vegetation survey

Vegetation surveys in the unrestored and restored areas were performed during the peak of
the vegetation period between July and August 2017 and 2018. The surveys in the REF were
done between June and August 2018. Cover in absolute percent was estimated for the total
vegetation, the individual plant functional types (trees, ericaceous shrubs (Ericaceae), other
shrubs, sedges (Cyperaceae), other herbs, peat mosses (Sphagnaceae), other bryophytes,
lichens), and the individual species (Wullschleger et al. 2014). Plant taxonomy and
nomenclature followed the Integrated Taxonomy Information System for vascular plants
(2021) and the Consortium of North American Lichens Herbaria for bryophytes and lichens
(2021).

1.4.4 Environmental variables

In the unrestored and restored areas WTL was measured between May and September in
2017 and 2018 as part of a related study (Lemmer et al. 2020). In the REF areas, if the water
table level (WTL) was inaccessible and immeasurable at or above the surface, holes were
dug prior the vegetation survey and WTL was allowed to equilibrate until the initial
measurement at the end of the vegetation survey. Additionally, at each REF area, an
automated WTL logger and barologger (Solinst Canada Ltd., Georgetown, ON) was installed
to record the WTL for one year following the vegetation survey in 2018. Before analysis,
WTL values were corrected for atmospheric pressure variations and expressed relative to the

surface level at the study area.

Measurements of additional environmental variables included the pH, the electric
conductivity, and the concentrations of major elements and micronutrients (calcium (Ca),

magnesium (Mg), potassium (K), sodium (Na), ammonium nitrogen (N-NH4"), nitrate
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nitrogen (N-NOs°), phosphate (P-PO4*), sulfate (S-SO4%), aluminum (Al), iron (Fe®),
manganese (Mn)) of water and soil. A pair of two water and soil samples each were taken at
three samples plots at each study area, at the same time of the vegetation survey. The two
water samples of 200 ml each were collected from water in the respective well pipe or hole
used for measuring the WTL. The two soil samples were each composed of four grab samples
of approximately 100 ml each, collected within the first 10 cm of the soil, within a designated
sample plot area of about 60 x 60 cm. All water samples were filtered through a 0.45 pym
cellulose filter (Thermo Fisher Scientific Inc., Chelmsford, MA, USA) before further
respective treatment. Of the two elements, one sample of each pair was kept cool at 4 °C until
analysis of pH and EC the next or the following day. The respective soil samples were
liquified in a 1:10 mixture with deionized water, to create a water sample suited for analysis
of pH and EC with an Orion Versastar Advanced Electrochemistry Meter (Thermo Fisher
Scientific Inc., Chelmsford, MA, USA). The second respective sample was frozen at -20 °C
and shipped to the Centre d’Etude de la Forét (Université Laval, QC) for analysis of the major
elements and micronutrients. Prior analysis, the thawed respective soil samples were cleaned
from roots and other organic litter, dried at 70 °C to constant weight, and ground.
Concentrations of Na, N-NOs", P-POs*, S-SO4> were analyzed via a FIA Quikchem 8500
Series 2 (Lachat Instruments, Milwaukee, WI, USA). Concentrations of Al, Ca, Fe*, K, Mg,
Mn, and N-NH4" were analyzed via an ICP Agilent 5110 SVDV (Agilent Technologies Inc.,
Santa Clara, CA, USA).

Soil temperature at 5 cm (STS) was measured biweekly at different times of the day at three
measurement plots in the unrestored, restored, and some reference areas as described in
Lemmer et al. (2020). At the remaining reference areas, STS was measured simultaneously

with WTL.

The climate averages of 1981-2010 measured at the meteorological stations of Peace River
and Cold Lake served as reference for total precipitation during a 120-day vegetation period

(May-August) and daily temperatures (Government of Canada 2019).
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1.4.5 Data analysis

All statistical and multivariate analysis were computed in R version 3.6.0 (R Core Team
2019). Utilized packages were the ‘agricolae’ package for statistical procedures for
agricultural research, the community ecology package ‘vegan’, and the multivariate
exploratory data analysis and data mining package ‘FactoMineR’, and the data visualizations
package ‘ggplot2’ (DeMendiburu 2019, Oksanen et al. 2019, Husson et al. 2020, Wickham
et al. 2020). Additional figures were created using BioRender (2021) and ArcGIS version
10.4.1 (ESRI 2015).

Analysis of vegetation data

To understand how different the plant species composition is among all study areas, we
assigned each species a specific wetland indicator status and compared the species richness
and diversity, and the abundance of plant functional types. Because lichens were rare in all
study areas and the low frequency of lichens was a factor for non-normal data distribution,
the lichen data was omitted during analysis. A Hellinger transformation was applied on the
remaining vegetation dataset to avoid the double zero problem and improve normality

(Borcard et al. 2018).

Wetland indicator species are characteristic hydrophytic plant species that are considered
specialists colonizing specific wetland habitats and ecosystems (Tiner 1993; Seppelt et al.
2008; Lichvar et al. 2009). All plant species were appointed a wetland indicator status (WIS)
specifically defined for this study, with inspiration from Tiner (1993), Gillrich & Bowman
(2010), Payette & Rochefort (2013), and USDA, NRCS (2021). The WIS categories for this
study are: 1) Peatland species (PEAT): essential for peatland communities in Alberta,
preferentially bogs and fens; 2) Other wetland species (OTHW): obligate and facultative
wetland species; 3) Non-wetland species (NONW): upland species and generalists (Table S2).
Each species was appointed to one category only. In the end, we identified 75 PEAT species,
98 OTHW species and 58 NONW species (Table S2). We used an ANOVA with a Tukey’s
Honest Significant Difference (HSD) test to identify significant differences (p<0.05) in

species richness among WIS groups in all study areas.
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Species are also assigned to wetland classes (B=bog, F=fen, M=marsh, S=swamp,
W=shallow open water) followed the Alberta Wetland Classification System (Alberta
Environment and Sustainable Resource Development 2015) that helped to decide the
exclusive affiliation for the WIS category. Fen characteristic species were defined as peatland
species colonizing preferentially fens, and species that have been associated in other studies

with early successional fens (Yu et al. 2003; Seppelt et al. 2008; Bérubé & Rochefort 2018).

Species richness, the number of species that are present within a specific biological
community, and a-diversity indices (Shannon’s H), the species diversity of an area-specific
biological community, were calculated in R using the ‘specnumber’ and the ‘diversity’
functions. We considered the complete plant species dataset for all study areas. An ANOVA
in combination with a Tukey’s HSD test was used to identify significant differences (p<0.05)
in species diversity and richness between all study areas. The restored areas are not replicated
at other sites or studies, therefor the study plots within the restored areas served as

replications in the ANOVA and multiple linear regressions.

Analysis of environmental parameters

To understand the environmental factors driving the vegetation composition, a redundancy
analysis (RDA) was performed to explain the ecological variation between unrestored,
restored and the reference areas using the ‘cca’ function. The model’s constraining variables
included biochemical and environmental factors. The corresponding response matrix
included the vegetation cover of species with at least 5% mean abundance if present. A
Hellinger transformation was applied to the vegetation dataset, in order to avoid the double-
zero problem (Borcard et al. 2018). Permutation tests (n=999) involving a stepwise forward
model selection was used to retain significant explanatory biochemical and environmental
variables. Eigenvalues were proportionally scaled (scaling 2), while study areas remained

unscaled with a weighted, equal dispersion on all dimensions.

To understand the effect of significant environmental variables on plant functional types, we
ran multiple linear regressions following the RDA. Regression models were run via the ‘/m’

function and were considered significant at the 95% confidence level (p<0.05).
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1.5 Results

1.5.1 Vegetation development

A total of 231 plant species were identified in all study areas combined (Appendix 1.1).
Vascular plants accounted for 157 species (31 of which were sedges), bryophytes accounted
for 66 species (including 11 Sphagnum sp.), and lichens accounted for 7 species (Table 1.1).
Overall species richness was highest in the REF (BOG: 59, SPF: 68, GRF: 70, SRF: 85,
WREF: 88), except in the marsh where only eight species were observed. Highest species
richness among the restored areas was measured in PROE and PRO (50 and 48 species
respectively). while the lowest species richness was in PR5 (18 species). The study areas’ a-
diversity was estimated via the mean Shannon’s diversity index H, which is higher with
increasing species richness and evenness (Borcard et al. 2018). Eight to ten years post-
restoration, the restored areas appear as diverse as undisturbed REF (Figure 1.4). Among all
study areas, the restored PROE and PRO and the undisturbed WRF had the highest a-diversity
(H=1.9, H=1.8, H=1.9 respectively; Figure 1.4). The marsh study area had the lowest a-
diversity among all study areas (H=0.8; Figure 1.4).

Table 1.1 Species richness at all study areas, showing the total numbers of plant species sorted by vascular
and bryophyte species, and by wetland indicator status (WIS; PEAT=peatland species: essential for peatland
community in Alberta, preferentially bogs and fens; OTHW=other wetland species: obligate and facultative
wetland species; NONW=non-wetland species: upland species and generalists). Meaning of status and study
area codes according to Appendix 1.1.

Status Study area Total plant Vascular plant Bryophyte =~ Wetland indicator status

species species species PEAT OTHW NONW

UNR UNR 46 28 18 10 17 19
PR15 29 25 4 2 13 14

PR5 19 14 5 2 13 4

RES PROE 50 37 13 12 30 8
PRO 48 42 6 14 29 5

CR 32 21 11 11 18 3

M 9 8 1 2 7 0

GRF 70 50 20 30 32 8

REF SRF 85 58 27 34 40 11
WRF 91 52 39 52 26 13

SPF 68 40 28 39 15 14

BOG 62 32 30 45 9 8

Total - 231 157 66 75 98 58
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Figure 1.4 Species richness (bars) and a-diversity index Shannon’s H (points; ANOVA between classes Fus,
2809 = 8.52, p<0.001, adj. r>=0.22) calculated for the unrestored, restored and reference areas (code for study
areas according to Method section and Figure 1.2Figure 1.3; see also Appendix 1.1). Species richness is
represented according to the species’ natural habitat and wetland indicator status WIS (meaning of WIS codes
according to Table 1.1). Each species was appointed to one category only.

Regarding plant functional types, brown mosses and sedges had the highest abundance within
restored areas eight to ten years post-restoration (particularly Drepanocladus aduncus and
Ptychostomum pseudotriquetrum, and C. aquatilis and E. palustris; Figure 1.5; see also
Appendix 1.5). Simultaneously, peat mosses and ericaceous shrubs are largely absent from
all restored areas, except for very low occurrence (2% cover each) in the dry microform of
PRO (Figure 1.5). The covers of small trees and shrubs like L. laricina, S. exigua, and

S. glauca, were highest in PR15 (>18%) and lowest in PROE (5%) and CR (1%). In contrast,
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the covers of characteristic fen plants were highest in PROE (52%) and the lowest in PR15
(10%). Including the floating moss carpet, the shallow open water area CR had a cover of

29% fen characteristic plant species.
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The highest PEAT species count among restored areas was observed in PRO (14 species;
Table 1.1). The highest PEAT species cover was measured in CR (34%). In PROE, PEAT
species were twice as diverse, according to the Shannon’s H index than in CR and almost
four times more diverse than in PR15 (Figure 1.4). OTHW species contributed more than
60% to the species richness of PROE, PRO, and PR5. The NONW species richness in the
restored areas was highest in PR15 (12.1) with almost 48% of the vegetation being NONW
species, and lowest in CR (0.8). UNR is dominated by 19 NONW species, which represents
approximately 41% of the species in this area (Figure 1.4). Among REF, the highest PEAT
species count was observed in WRF (52 species, making up 57% of the area-specific species

composition) followed by BOG (45 species, >72% of area-specific species).

Sonchus arvensis was the only observed invasive species that was recorded in the restored

areas PR15 and PRS5 only during the 2017 survey.

1.5.2 Effects of environmental conditions on the vegetation community

The 2017 growing season had a warm, dry summer with intense precipitation events, while
the 2018 season had a cooler and consistently wetter summer. The diverging weather between
the two study seasons is well represented in (Appendix 1.7a & b). During the first year of the
study, the WTL of the drier study areas UNR, PR15, PRS, and BOG, were on average
approximately 20 cm below the surface, and the WTL of the wetter study areas PRO, PROE,
CR, GRF and WRF were at or 20 cm above the surface. During the second year of the study

the WTL of all study areas were close to or above the surface.

Among all study areas, PR5 and PR15 had highest values for water EC (2574 and 2456
puS/cm) and soil EC (1309 and 1327 puS/cm), water extractable concentrations of Ca (273 and
208 mg/L), Mg (109 and 99 mg/L), S-SO4* (298 and 268 mg/L) and soil S-SO4> (1638 and
5608 mg/L; Appendix 1.3Appendix 1.4).

The concentrations of soil Mn, water extractable concentration of P-PO4*, soil temperature
at 5 cm depth (STS) and WTL, explained approximately 70% of the variability of plant
species cover on the first two axis (Fs,11y=2.1, p=0.001, *=0.43; Figure 1.6). The restored
and graminoid rich fen areas are clearly separated along the first axis from the bog, the

shrubby rich fen and the wooded rich fen by STS and the concentration of phosphate in water
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(Figure 1.6). On the second axis, WTL and soil manganese separate the shrubby and wooded

rich fens from the restored areas (Figure 1.6).

RDA triplot - Scaling 2 - wa
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Figure 1.6 Redundancy analysis (RDA) triplot (scaling 2) with forward selection of environmental and chemical
variables (ST5=soil temperature at 5 cm; wPO4=water extracted P-PO.%; sMn=soil Mn; WTL=water table level)
constraining the plant species cover. The reference area shrubby poor fen (SPF) does not appear, due to missing
biochemical and environmental data. Code for study areas according to Method section and Figure 1.2Figure
1.3 (see also Appendix 1.1). Code for plant species in Appendix 1.2. For better visualization, not all plant species
are shown.

The environmental variables soil Mn, water PO4 and ST5 explained 69 to 96% of variation
in the cover of plant functional types, except for herbs and sedges (Appendix 1.6). Brown
moss cover was significantly higher with shallower WTL (p<0.0). The concentration of soil
Mn was positively related to the cover of shrubs (p<0.0) and peat mosses (p<0.0), while being
negatively related to the cover of other bryophytes (p<0.01). Significant positive regression
relations were found between water P-PO4* and the cover of the total vegetation,

representing all plant functional types combined (p<0.04), the cover of ericaceous shrubs

50



(»<0.0), of bryophytes (p<0.02), and of peat mosses (p<0.0). Soil temperature (ST5) had a
significant negative regression relationship to the cover of trees (p<0.0), shrubs (p<0.05), and
the peat mosses (p<0.0). No significant relationship was found between the environmental

variables and cover of herbs or sedges.

1.6 Discussion

1.6.1 Vegetation development

In regard of our first research question, the investigation of the plant communities in all
restored areas indicated that active reintroduction of characteristic plant species does not
seem crucial to establish peatland characteristic vegetation. Instead, we suggest that
revegetation alone is not sufficient for a restored area to recover, but site-specific
hydrological conditions and location within proximity to a nearby diverse diaspore pool are
the more important factors to create the best chance for desired vegetation reestablishment

and peatland recovery.

Eight to ten years post-restoration, the vegetation composition in the restored areas PRO,
PROE and the floating moss carpet in CR is comparable to reference fens. In all three restored
areas, spontaneous revegetation followed the mineral fill removal. While the species
composition of CR’s floating moss carpet compares to the vegetation of graminoid rich fens
(GRF), the moss carpet is not representative of the entire restored area, which is dominated
by shallow open water. We suspect the proximity of CR-D, PRO and PROE to adjacent
undisturbed fen ecosystems and the meticulous reconnection of hydrology to have had
positive impact on the return of characteristic biochemical processes and opened the newly
reclaimed wetland to nearby natural diaspore pools (Campbell et al. 2003; Price et al. 2010;
Rochefort et al. 2016).

The prolonged, excessive flooding of previously disturbed and restored wetlands has been
perceived to promote plant communities other than fen vegetation (Caners & Lieffers 2014;
Kreyling et al. 2021). The same effect was observed in CR, where a marsh-like vegetation
developed in the shallow open water area. The marsh-like vegetation may take decades to

centuries to transform into a functional peatland, if this occurs at all (Kuhry et al. 1993;
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Caners & Lieffers 2014; Kreyling et al. 2021). In contrast, the floating moss carpet has a high
potential to accumulate great amounts of peat and drive the peatland succession via
terrestrialization (Joosten & Clarke 2002 ; Asada et al. 2005). However, the success of
terrestrialization via the expansion of the floating moss carpet and subsequent peat formation
may prove difficult in large-scale restoration with large areas of turbulent waters (Bechstein
et al. 2010; Caners & Lieffers 2014). Furthermore, unlike the aim of ecological restoration,
this scenario is impossible to achieve in the near future (Gann et al. 2019). Other research
shows, that the CR approach has been effective for peatland restoration (Cooper et al. 2017,
Xu et al. 2021). Many questions remain to be answered for the significant differences
between the CR approaches of the different studies that should be tested in large-scale trials

for practicality.

In terms of plant species composition, PRO and PROE are comparable to the graminoid and
shrubby rich fens (SRF). While both areas PR0 and PROE show a high species diversity and
very high species evenness, they are up to 43% less species rich than REF. The species
composition is dominated by more than 85% PEAT and OTHW species combined,
demonstrating the driving force of the water table level (WTL) and chemical conditions for
the natural ingress of a diverse, large spectrum of peatland species (Keddy 1999; Hedwall et
al. 2017; Wagg et al. 2017). Additionally, microtopography (differences in elevation of the
ground surface) has been observed to increase the successional recovery of fen characteristic
plant species in restored cutover peatlands and following oil sands exploration (Pouliot et al.
2011; Caners & Lieffers 2014). This effect is represented in the dry and wet microforms
within PRO that resemble the dry, moss dominated hummocks and the wet, herb dominated

hollows found in shrubby rich fens and graminoid rich fens (SRF, GRF).

Initially, we had expected the species composition of PR5 and PR15 to compare to reference
fens (GRF, SRF, WRF), since both restored areas received active introduction of
characteristic fen plant seedlings. On the contrary, the species composition in both areas, PRS
and PR15, was even less peatland species rich than the unrestored area (UNR). Fattorini and
Halle (2004) and Moreno-Mateos et al. (2012) argue that active revegetation, as done at PRS
and PR15, hinders natural ingress from nearby diaspores. The same effect was observed in

PRS5, where the lowest species richness and diversity was measured, despite the dominance
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of planted C. aquatilis, a PEAT and characteristic fen species. The naturally emerging brown
mosses observed in PRS and PR15 in the beginning of our first study season, struggled to
survive the two seasons of the entire study. During the first season, the bryophytes desiccated
and dies due to drought and a low water table level (Kuhry et al. 1993; Churchill et al. 2015).
Other studies in restored peatlands following in sifu oil sands exploration disturbances show
that especially during periods of drought, emerging bryophytes are suppressed by abundant,
untargeted graminoid herb species, such as C. inexpansa and Poa sp., and very dense
Cyperaceae-communities with abundant C. aquatilis (Caners & Lieffers 2014; Churchill et
al. 2015). This succession towards a vegetation community dominated by undesired, non-
wetland graminoid herb species was also observed in PR15 that experienced continuously
dry conditions in 2017 due to its higher elevation relative to water table level. The few
bryophytes that had persisted through the drought of 2017, eventually died during the 2018
season with extended periods of inundation that are also known to hinder moss establishment

(Caners & Lieffers 2014; Granath et al. 2010).

1.6.2 Effects of environmental parameters on the vegetation

In regard to our second research question, we found a residual mineral fill a suitable base
layer supporting the development of peatland characteristic vegetation, despite enrichment
in base cations. We consider the partial removal to the water table level (PRO and PROE) and
subsequent biochemical and environmental conditions to be the most successful restoration
approach assessed in this study, based on the area’s abundant peatland characteristic plant
species compositions. The return of characteristic physical soil properties and biochemistry
are important for a successful peatland restoration (Davidson et al. 2020; Saraswati et al.
2020a; 2020b). The complete removal (CR) approach assessed in our study did not result in
transforming a disturbed peatland into a functional peatland ecosystem comparable to the
reference models, at least not within a decadal timeframe (Gann et al. 2019). The peat was
unable to rebound to the level prior disturbance, although the mineral fill was removed, and
the peat resurfaced. Long-time compression and subsequent inundation meant that there was
no suitable substrate for potential peatland vegetation to establish on, and instead mostly
undesired aquatic species flourished and at the edges of the open water area, a marsh-like

community with dominant 7. /atifolia was able to colonize.
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At PR5 and PR15 environmental variables did not compare to characteristic peatland
conditions as observed in the surrounding bog or the other reference areas, ten years post-
restoration. Characteristic peatland plant species migrating from the adjacent bog are less
likely to survive in the environmental conditions found in PRS5 and PR15, where a residual
mineral fill remains in place without neither steady hydrological connection, nor much
influence from well pad surface runoff. The mineral fill appears to impede hydrologic and
hydraulic reconnection to the adjacent bog’s relatively low ground and surface water table
level, and to alter the biochemistry of the restored areas to less suitable conditions for
peatland vegetation. The low and acidic pH 3.6 and 3.4 that we observed in PR5 and PR15
respectively, might be caused by sulfuric acid created under high S-SO4?* concentrations (297
and 268 mg/L). In the water we observed extremely high EC (2574 and 2456 uS/cm), and
high base cation concentrations of Ca (273 and 208 mg/L) and Mg (109 and 99 mg/L). While
the abundant sedge vegetation’s high root density might contribute to enhanced sulfate
reduction (Altor 2016), the elevated Mg and S-SO4* concentrations at PR5 and PR15 are
likely a result of the residual mineral fill, which is known to be rich in salts in the Peace River
region (Alberta Environment 2001). Given the combination of high salt concentrations and
little hydrological exchange, the dominance of the planted C. aquatilis and Salix sp. with
little bryophyte ingress on PRS5 and PR15 is no surprise. This agrees with other studies of
constructed peatlands in the oil sands regions with emerging communities of dense graminoid
and shrubby rich fen vegetation species, that tolerate saline conditions, including C. aquatilis,

Typha sp., L. laricina, and Salix sp. (Biagi et al. 2019; Hartsock et al. 2021a, 20215).

In contrast, in the residual mineral fill affected restored areas PRO and PROE, biochemical
conditions were found similar to extreme-rich fens, eight years post-restoration. The residual
mineral fill certainly influenced soil and water chemistry but did not seem to hinder ingress
of fen characteristic plant species and the development of robust vegetation communities, as
the biochemistry remains within the natural range of variation (Vitt et al. 1995). This
indicates that paludification can be instigated and develop a healthy mire if hydrological
reconnection is optimized and diaspore sources are nearby (Kuhry et al. 1992; Vitt 1994;

Kroetsch et al. 2011).
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Soil temperature at 5 cm depth (ST5) had a significant impact on the vegetation cover,
particularly of trees, ericaceous shrubs, and peat mosses. Various studies have found soil
warming a serious threat to the health of peatland vegetation communities by altering the
plant species composition and the associated quality of plant organic matter input that is
important for ongoing peat formation (Moore 2002; Juszczak et al. 2013; De Long et al.
2016). Furthermore, warmer soil temperatures lead to accelerated desiccation and
decomposition processes that triggered enhanced greenhouse gas emissions (Hedwall et al.
2017; Gong et al. 2018; Lemmer et al. 2020). In our study, we found the colder the soil
temperature the higher the total vegetation cover was. In the exposed restored areas without
trees and shrubs spending cooling shade, and without a cooling hydrological connection, as
in PRS and PR15, the warmer ST5 may have been the benefiting factor for non-wetland

species to dominate the vegetation community, instead of characteristic peatland species.

The unrestored area (UNR) was dominated by non-wetland species, without comparable
traits to reference areas (REF), ten years post-restoration. The large ecological distance
between UNR and REF highlights the earnest need for ecological peatland restoration
intervention following in situ oil sands disturbances. To evaluate future wetland restoration
trials and success, we need a network of regional reference peatlands. Reference peatlands
serve as important benchmarks, to know which conditions and functions to target under
which circumstances. With this study we have started to build a comprehensive database of
regional reference peatlands. To continue this process now is especially important
considering the fast growing in situ infrastructure network and the threat of losing potential

reference peatlands to the ongoing expansion.

Our findings indicate that given a proper hydrological connection to a surface-near water
table and an adjacent peatland ecosystem, a residual mineral fill following the partial removal
of an in situ oil sands well pad can support the ingress and development of characteristic
peatland vegetation, particularly rich fen species. It became clear that the development of the
vegetation communities is dependent on the site-specific biochemistry. We observed large
variation in the biochemistry and environmental variables between study areas that was most
likely driven by the combination of local environmental factors and the chemistry of the

respective mineral fill. We stress the importance of careful groundwork and site management
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suited to local conditions and ecosystem mosaics, and the vital need for a nearby fen as
diaspore source for a desired ingress of diverse characteristic plant species. Hence, the need
for further studies on replicated peatland restoration trials to better evaluate the effect of a
residual mineral fill on the peatland’s biochemistry and plant species composition, as well as
the factors leading to the shallow open water formation and how to avoid it. First, we
recommend further trials of the complete removal groundwork as peatland restoration
approach, to understand the peat structure and the peatland’s response to compression and
rewetting following the complete removal of a well pad’s mineral fill. Secondly, we strongly
suggest further large-scale trials (entire in sifu well pad) testing the partial removal approach,
to evaluate the development of biochemistry, environmental drivers, and vegetation

communities at operational scales.

1.7 Implications for Practice

e When restoring a fen following in situ oil sands well pad disturbances, the surface-
near hydrology should be re-established by adjusting the soil surface at the summer
average water table level of adjacent peatlands, while the development of shallow
open water should be avoided at all costs.

e Partial removal of mineral fill can support fen vegetation growth, while complete
removal may lead to shallow open water with mostly aquatic species.

e Characteristic peatland vegetation resembling graminoid rich fens can successfully
emerge on residual mineral fill, if a surface-near hydrology is reinstated and a
diaspore source is in close range (adjacent fen).

e Careful characterization of the pre-disturbance peatland type and the adjacent
peatland can help to determine the restoration target, and methods to promote natural
ingress and succession of characteristic peatland species.
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Appendix 1.7 Water table level relative to the surface in the study areas: (a) restored and unrestored areas, (b)
undisturbed REF adjacent to the restored areas and in the greater Peace River and Cold Lake oil sands regions.
Meaning of study areas according to Appendix 1.1.
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Chapter 2 Greenhouse gas emissions dynamics in
restored fens after in situ oil sands well pad
disturbances of Canadian boreal peatlands

Meike Lemmer, Line Rochefort, Maria Strack

2.1 Résumé

La restauration des tourbigres, suite aux perturbations par I'extraction in situ du pétrole, vise
a rétablir les fonctions essentielles des tourbiéres telles que 1'accumulation de tourbe et la
séquestration du carbone (C). Dans ce contexte, nous avons évalué les conditions
biogéochimiques, les bilans C saisonniers via 1'échange net des écosystémes (ENE), les
émissions de méthane (CHa) ainsi que le potentiel de réchauffement global de quatre
méthodes de restauration des tourbiéres. Des comparaisons ont été effectuées avec des
écosystemes de référence régionaux (REF). Apres l'enlevement complet de tous les
matériaux de construction, une zone d'eau libre peu profonde s’est formée et est devenue une
source nette de carbone dans l'atmosphere, avec un potentiel de réchauffement global élevé
en raison d’émissions ¢élevées de CHas. L'introduction active d'espéces végétales ne semble
pas nécessaire pour ramener des especes végétales bénéfiques pour la séquestration du
carbone. Les traitements de restauration qui ont entrainé le nivellement du remplissage
minéral par rapport au REF environnant et au niveau de la nappe phréatique ont présenté le
bilan saisonnier de C le plus similaire au REF. De plus, le rétablissement d'especes d'arbustes
et de mousses brunes a amélioré de maniere significative 1'absorption de C.
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2.2 Abstract

Peatland restoration following the in situ oil extraction aims at reestablishing crucial peatland
functions, such as peat accumulation and carbon (C) sequestration. In this context, we
assessed the biogeochemical conditions, the seasonal carbon balances via net ecosystem
exchange (NEE) and methane (CH4) emissions and addressed the global warming potential
of four peatland restoration methods. Restoration work involved the partial or complete
removal of a former well pad’s mineral fill, and spontaneous revegetation or active
reintroduction of typical fen plant species such as Larix laricina, Salix lutea and Carex
aquatilis. Comparisons were done with regional reference ecosystems (REF). A shallow
open water area, following the complete removal of all construction materials, became a net
C source to the atmosphere with elevated global warming potential, due to highest CHs4
emissions. The active introduction of plant species does not seem necessary to return
beneficial plant species for C sequestration. Restoration treatments that resulted in the
levelling of the mineral fill to the surrounding REF and the water table level showed the most
similar seasonal C balance to REF. Furthermore, the reestablishment of shrub and brown
moss species significantly improved the C uptake.
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2.3 Introduction

In the boreal biomes of the northern countries, industrial activities are constantly increasing
within the last decades, including the area of oil sands mining, bitumen and gas extraction.
The location of the development of this fast-growing industry coincides with the main
distribution of the world’s peatlands. Here we investigate the carbon (C) dynamics of
disturbed northern peatlands impacted by oil and gas extraction infrastructure, following
restoration with a variety of different techniques after in-place (in situ) bitumen extraction
has ended. The goal is to evaluate the impact of fen restoration on different ecosystem
attributes, such as greenhouse gas emissions and the return of the carbon sequestration

function, compared with conditions prior to disturbances.

Undisturbed peatlands are recognized as the most effective C storing ecosystems on earth,
which, globally, cover an area of more than 3 million km? and store an estimated 644 to
1 105 Pg C (Leifeld & Menichetti 2018; Nichols & Peteet 2019). At the same time, they
continuously take up approximately 0.37 Pg carbon dioxide (CO.) from the atmosphere per
year (IUCN 2017), making them a substantial ally in the fight to reverse global warming.
Nevertheless, approximately 1.91 Pg CO»-e are emitted annually by drained and degrading
peatlands (Leifeld & Menichetti 2018). Restoration and rewetting of disturbed peatlands is
therefore recognized as a natural climate solution and allows countries to improve their C
emission balance according to the national climate action plan under the United Nations

Framework Convention on Climate Change (UNFCCC 2009).

Peatland disturbances by the oil and gas industry in the boreal region of northern Alberta are
caused by open-pit oil sands mining activities up to 75 m depth (3% of the deposits), and the
deep drilling in situ bitumen extraction infrastructure for oil deposits at approximately 200 m
depth (97% of the deposits; Government of Alberta 2020). The in situ oil sands extraction
process involves the construction of thousands of oil extraction well pads scattered across
the landscape, associated steam, power, and water treatment plants, processing and storage
facilities, and exploration and access roads. While an average oil sands well pad is
approximately 1 ha in size, the total area disturbed, including more than 180,000 well pads

and associated facilities installed to date, added up to more than 149 000 km? by 2009 (Lee
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& Cheng 2009; Natural Resources Canada 2015). These developments occur in the boreal
region’s vast mosaic of forests and wetlands, and affect the ecosystems’ hydrology,
biodiversity, and biogeochemistry by ground compaction and introduction of foreign mineral
substrates (Price et al. 2003; Graf 2009). In order to stabilize the oil pumps and other
processing facilities within a peatland ecosystem, an in sifu oil sands well pad needs to be
well-drained and firm. The construction process involves the clearing of larger trees and
shrubs if necessary and placing of a geotextile over the then levelled original peatland
surface, followed by the installation of a 1 to 2 m thick layer of compacted mineral substrate,
prior the installation of pumping equipment and related oil extraction infrastructure. When
the oil reserves are exhausted and the well pad will no longer be used, oil sands operators are
required to reclaim these disturbed peatlands according to the Alberta Environmental
Protection and Enhancement Act (Alberta Queen’s Printer 1994). Specifically targeted
peatland restoration outcomes anticipating an “equivalent land capability” were defined in
2015, where criteria for restoration assessment are based on the vegetation species
composition of bryophytes and vascular plants, biogeochemical soil conditions, such as
nutrient supply rate, hydrology and soil organic matter content, as well as landscape quality
(Environment and Parks 2017). Environment and Parks (2017) defined the long-term goals
of peatland restoration after well pad disturbances to be the return of the interdependent
ecosystem functions present prior to disturbance, including water storage and filtration,

wildlife habitat, peat accumulation, and carbon sequestration.

Restoring peatland functions after in situ oil sands well site disturbances in Alberta is a fairly
new process that has started in 2007. All available trials have stressed the importance of
restoring hydrological conditions (Vitt et al. 2011; Sobze et al. 2012; Vitt et al. 2012a; Caners
& Lieffers 2014). Although few studies have investigated ecological functions returning to
restored peatlands after oil sands well site disturbances, the importance of restoring proper
hydrologic conditions in peatlands affected by drainage and peat extraction has been broadly
studied (Price et al. 2003; Large et al. 2007; Price et al. 2010; Cooper et al. 2017; Ahmad et
al. 2020; Saraswati et al. 2020). If oxygen levels rise in the upper peat layer called “acrotelm”,
which is periodically saturated and aerated according to the changing water table level
(WTL), microbial activity and aerobic oxidation are enhanced (Price et al. 2003). In the case

of disturbed peatlands due to peat extraction, vascular plant cover is often higher following
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restoration than in comparable undisturbed peatlands (Strack et al. 2016). The higher the
vascular plant cover, the higher the ecosystem respiration (Reco), but the vegetation takes up
significant amounts of CO; at the same time, generally leading to net CO: storage (Strack et
al. 2006; Nwaishi et al. 2016; Strack et al. 2016; Nugent et al. 2018). Vascular plant species
of boreal peatlands in Northern Alberta include shrub species, such as Betula sp., Larix
laricina, Salix sp., Picea mariana, and ericaceous shrubs like Rhododendron groenlandicum
and Vaccinium sp., as well as herbaceous species, namely Caltha palustris, Comarum
palustre, Equisetum sp., Maianthemum sp., and a large variety of sedges, such as Carex
aquatilis, C. diandra, C. bebbii, C. lasiocarpa, C. utriculata, Eleocharis sp., Eriophorum sp.
(Alberta Environment and Sustainable Resource Development 2015). However, vascular
peatland plant species, in particular graminoid species such as sedges, rushes, and grasses,
are considered to enhance methane (CHs) emissions due to their large aerenchyma (Green &
Baird 2012; Lazcano et al. 2018), while Strack et al. (2017) have found brown mosses to
effectively decrease CH4 emissions. Following a hydrological restoration after peat
extraction for example, an increase in the WTL and vascular plant and moss cover result in
the return to uptake of CO2, while CH4 emissions rise due to enhanced methanogenesis, but
do not reach the emission rates of natural peatlands (Sundh et al. 1995; Evans et al. 2016;

Strack et al. 2016; Hemes et al. 2018).

As mentioned above, very few well pad to peatland restoration projects have been attempted
to date. In 2012, the moss layer transfer technique (Quinty & Rochefort 2003) was
successfully applied on a restored well pad within a wooded bog, in the Carmon Creek
division of the Peace River, Alberta. The inversion of the mineral pad and underlying peat
layers proved to be a successful base for the introduction of bog moss propagules (Sobze et
al. 2012). Shunina et al. (2016) conclude from their bog restoration trial in the Cold Lake
region, Alberta that different microtopographic conditions prove to be favorable for different
vascular plant and moss species, while they observed a higher resilience towards interannual
moisture variation due to changes in WTL. On the other hand, to restore fens on former in
situ oil sands well pads, only few attempts have been made during the last 12 years, and our
understanding of fen restoration method’s abilities to return ecosystem functions remains
limited. In this study, we evaluate the effect of different fen restoration techniques on two

research sites, located in the Oil Sands regions of Peace River and Cold Lake, Alberta where
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a series of different restoration strategies were tested, including the complete and partial
removal of the former well pad’s mineral soil and clay layers, as well as re-introduction of
specific plant species or natural re-vegetation. While the complete removal of a well pad
favors the development of shallow open water areas with mostly aquatic vegetation, the
partial removal of the mineral soil promised to achieve a well-adjusted levelling of the
residual well pad with the surrounding fen ecosystems and obtain an optimal WTL to
stimulate natural fen re-vegetation (Imperial Oil Resources 2017, personal communication).
In 2007, Vitt et al. (2011) attempted to imitate fen initiation via paludification, by restoring
peatlands directly on the mineral substrate of the well pad. Pioneer plant species were
introduced and the WTL was well managed, in order to promote plant succession for the
development of organic matter accumulation over time (Vitt et al. 2011; Koropchak et al.
2012). The introduction of sedge species known to colonize early stage fens proved
successful, if hydrological conditions were maintained (Wieder & Vitt 2006; Vitt et al. 2011;
Koropchak et al. 2012; Vitt et al. 2012b). Another peatland initiation technique was tested in
2009, focusing on the transfer of moss propagules (Sphagnum sp.) in addition to the
introduction of vascular plant species (Gauthier 2014; Gauthier et al. 2018). This study
clearly illustrated the importance of choosing characteristic fen moss species over bog moss

species for mineral wetland restoration after well pad disturbances (Gauthier 2014).

The investigated fen restoration techniques in this study represent some first trials to restore
Canadian in situ oil sands well pads in the boreal region, hence, the outcomes have not been
studied before and no best practice has been established to restore former in situ oil sands
well sites. Since the restoration of characteristic peatland functions such as C sequestration
and peat accumulation is targeted, our aim was to evaluate the impact of fen restoration
techniques on different ecosystem attributes, such as greenhouse gas emission rates and
primary production. In this paper we will focus especially on the net ecosystem exchange
(NEE) of CO; and CH4 flux dynamics of spontaneously emerged vegetation communities
and of communities with intentionally re-introduced species, in restored fens impacted by
mineral substrate. Comparisons will be made to regional peatland reference ecosystems
(REF). We hypothesize that the net C uptake will be most similar to the rate of REF when 1)
characteristic fen vegetation species are present, and also when 2) biogeochemical

conditions, such as nutrient concentrations, pH and electric conductivity, are most similar to
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REF. We further hypothesize that 3) CH4 emissions are enhanced through the complete well
pad removal, as in the process created depressions and permanently saturated conditions

enhance methanogenesis.

2.4 Methods

2.4.1 Study sites

This study was conducted in two different research areas in the Peace River and Cold Lake
Oil Sands regions in northern Alberta, Canada (Appendix 2.1). Two decommissioned in situ
oil sands well pads and three adjacent REF served as study sites. Both well pads were about
100 x 100 m in size and were constructed in the following manner: first, trees and taller
shrubs were cut, then a geotextile was placed over the remaining vegetation upon the original
peatland, and then 1 to 2 m compacted clay was laid down on the top of it to stabilize the

“swampy” ground before the oil extraction equipment and infrastructure were installed.

Well pad in the Peace River Oil Sands

Located 35 km northeast of the city of Peace River one well pad was constructed within a
wooded bog ecosystem (56°23'0.95" N, 116°46'43.43" W). In the adjacent bog, a natural
undisturbed area was chosen as one REF for this study. Peace River, the well pad’s name
from here on, is located in the Dry Mixedwood natural region of Alberta’s boreal region
(Beckingham & Archibald 1996), with 70% of its annual precipitation falling between April
and August, while the annual average precipitation reaches 386 mm (Government of Canada
2019). The average frost free period is 112 days with average daily temperatures of 13 °C
between May and September (Government of Canada 2019). Wooded and shrubby fens
dominate in this region, while sedge fens and bogs are rather seldomly encountered (Natural

Regions Committee 2006).

Peace River was decommissioned in 2000, 20 years post construction. The unaltered original
well pad was reclaimed with herb seedings of Melilotus alba and M. officinalis, which were
spread atop of the compacted clay surface. In 2007, the site was offered to a research group
for a restoration experiment based on the principles of ecological restoration, to assist the

return of a peatland. On the east side, a band of the well pad (30 x 100 m) was used to trial

&5



treatments to initiate fen development on mineral soil (Vitt et al. 2011; Koropchak et al.
2012). The experimental area was divided into two study areas (Figure 2.1). Within one area,
the clay fill was partially removed in order to create a surface profile sitting on average 4 to
6 cm above the WTL of the adjacent bog. In this study, we refer to this treatment as partial
removal with water table at 5 cm (PR5). Within the second area, less clay was removed so
that the grading would create a surface profile being on average 15 cm above the bog’s water
level (PR15). In both study areas, different soil and fertilization amendments were then
applied (see Vitt et al. 2011 for details), while L. laricina, S. lutea and C. aquatilis were
planted. Ten years following this study, we observe in PR5 some S. planifolia and S. exigua
present among the very dominant C. aquatilis, while in PR15 L. laricina, S. planifolia and S.
pyrifolia were well developed among the mix of dominating Calamagrostis inexpansa and
C. aquatilis. To minimize possible effects of the type of soil amendments on the greenhouse
gas dynamics, the measurement plots installed in the present study were chosen within
amendments as natural as possible, such as commercial peat, slough hay and control plots

without any amendment (Vitt et al. 2011; Koropchak et al. 2012).
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Figure 2.1 The Peace River well pad (white outline) is located within a wooded bog ecosystem, which serves
as reference ecosystem (BOG) in this study. In two restored sectors of the well pad, the mineral soil was partially
removed (PR) to 15 cm (PR-15) and to 5 cm (PR-5) above the water table of the adjacent peatland. Yellow dots
indicate measurement plots.
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Well pad in the Cold Lake Oil Sands

The second well pad in this study is located 33 km northwest of the city of Cold Lake
(54°41'10.82" N, 110°30'59.75" W). Cold Lake, what this second well pad will be named
from here on, was partially constructed on upland, partially in a wooded rich fen
characterized by tall trees and partially in a wooded extreme-rich fen, characterized by shrub-
sized tree species. Within each of these two fens adjacent to the former well pad, at least
10 m away from any disturbance, an area was chosen as REF: 1. treed rich fen (7RF) and 2.
shrubby extreme-rich fen (SRF). Cold Lake lies in the moist Central Mixedwood ecoregion
of boreal Alberta (Beckingham & Archibald 1996), with an annual average of 421 mm
precipitation, an average frost free period of 116 days and a daily average temperature of

13.9 °C during the summer months (Government of Canada 2019).

Cold Lake was decommissioned in 2003, only one year after its construction, due to drilling
problems caused by underlying shale. The well pad was subject to different restoration
techniques between 2008 and 2009. The central part of the former well pad was kept intact
in order to continue operating a monitoring well (unrestored study area, UNR hereafter,
Figure 2.2). For another part, a complete removal of all introduced building materials
(mineral substrate and geotextile) was achieved in spring 2008 (complete removal, CR). In
this complete removal area, a shallow open water area established due to compaction of the
underlying peat by the weight of the mineral material. For a third part of the pad, a partial
removal of the mineral substrate was carried out successively during 2008 and 2009, as done
at Peace River. The goal was to obtain a surface elevation similar to that of the surrounding
fens, where water table is close to surface elevation (PRO). All restored areas of Cold Lake
were left to re-vegetate spontaneously, with the reasoning that the surrounding undisturbed
wetlands could provide a natural source of diaspores by dispersion. By 2017, emergent
aquatic vegetation and a floating moss carpet with sedges and emergent Salix sp. and Betula
sp. had formed in the CR area. We separated the PRO area into two areas considering diverse
ground relief, where different marsh-like vegetation communities had established. One area
is characterized by an uneven relief forming drier and wetter microforms, where dominant

Typha latifolia, Salix spp., and sedge communities formed (named PRO-D/W, D for dry and
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W for wet). The other area’s ground is even and covered by diverse bryophytes that formed

between abundant Equisetum spp. and T. latifolia (named PRO-E, E standing for even).

Figure 2.2 The Cold Lake well pad (white outline) is located within a mosaic of uplands and wetlands, which
serve as reference ecosystems (TRF=treed rich fen, SRF=shrubby extreme-rich fen). Blue shaded sectors are
restored areas where different restoration techniques of complete and partial mineral soil removal were tested
(CR=complete removal, PR-0-D/W and PR-0-E=partial removal of mineral soil to near the adjacent fen
ecosystems, with high/dry (D) and low/wet (W) microforms, and with even ground (E)). The grey shaded
unrestored sector (UNR) serves as a control sector on the former well pad's residual mineral soil. Yellow dots
indicate measurement plots.
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Reference sites

Three peatland REF served as monitoring sites for comparison: BOG (56°22'59.50" N,
116°46'38.60" W; Figure 2.1), a wooded bog, had a characteristic tree and shrub vegetation
composition of P. mariana, R. groenlandicum, Chamaedaphne calyculata and Vaccinium
vitis-idaea, as well as a dense moss layer with S. fuscum, S. rubellum and P.
pseudotriquetrum. TRF (54°41'8.88" N, 110°31'4.06" W; Figure 2.2), a treed rich fen, had a
distinct tree layer with P. mariana and L. laricina, a shrub layer with R. groenlandicum and
a ground layer with E. hyemale, M. trifoliata and moss species, such as Aulacomnium
palustre, Helodium blandowii and T. nitens. SRF (54°41'14.80" N, 110°31'0.54" W; Figure
2.2) was a wooded extreme-rich fen with abundant B. pumila, Salix sp. and L. laricina that
formed a shrub mosaic with abundant herbaceous vegetation like Equisetum sp., M. trifoliata,

Triglochin maritima, and sedges, such as C. lasiocarpa, C. interior, and C. sartwellii.

2.4.2 Measurement plots

Within all study areas (Appendix 2.2), monitoring plots were selected according to the
restoration technique applied and according to the most representative natural state of the
REF. Special focus was placed on the vegetation development resulting from differing
microforms (Table 2.1). Microforms were considered either for different elevation, such as
hummock/hollow (i.e., in BOG), or for different moisture gradients, such as dry/wet/even
(i.e., high lawn with shrubs/low lawn with sedges and mosses/even lawn with mosses).
Triplicate measurement plots were selected in each microform within each of the eight study
areas (n=48) where measurements of CO,, CHas, and abiotic data took place (Figure 2.1
Figure 2.2). Each measurement plot was defined by a metal collar of 60 X 60 x 20 cm size
that was inserted approximately 17 cm deep into the ground, and which served as a base for
the gas flux chamber. All plots were accessible via boardwalks in order to mitigate ground
disturbance around the installed collars, during measurements. At each plot, data was
collected biweekly during the regional vegetation period from May to September of both
monitoring years, 2017 and 2018. The large distance between the sites, as well as weather
and industry related constraints made a higher sampling frequency impossible to achieve.
This data collection corresponded to 10-11 years post-restoration for Peace River and 8 to 10

years for Cold Lake.
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2.43 CO; exchange

Measurements of CO; fluxes were assessed between 17 May and 28 September 2017 and
between 14 May and 14 August 2018. Fluxes were measured using a dynamic closed
chamber technique with a portable infrared gas analyzer (EGM-4) fitted with a PAR
Quantum sensor (both PP Systems, Amesbury, MA, USA) that was placed on top of the
chamber during measurements. The 60 x 60 x 30 cm large clear polyethylene chamber was
equipped with two standard computer fans connected to an external 12V battery for air
circulation, a thermocouple wire to connect to an external type K thermometer (Sper
scientific, Scottsdale, AZ, USA), and two tube adapters to connect the IRGA, in order to
exchange the sampled air in a circular flow. During measurements, the chamber was fit into
the collar’s u-profile rim, which we then filled with water in order to create an airtight seal.
In sample plots, where WTL were too high to install collars (CR-W) or collars were
submerged at certain times (PR0-W), the chamber was fitted with a Styrofoam collar,
enabling it to float on the surface. In plots, where shrubby vegetation was too large to fit in
the 30 cm high chamber, a 60 cm tall extension made likewise from clear polyethylene, with
a u-profile collar at the upper edge, was stacked under the chamber. To account for the
enlarged chamber volume, calculations for the flux analysis were accordingly adjusted.
Readings of CO; concentration (ppm), photosynthetically active radiation (PAR; pumol m™! s-
") and temperature in the chamber (°C) were recorded in a 15 second interval for 105-
120 seconds. Measurements of net ecosystem exchange (NEE) were repeated under full light
conditions and imitating different light conditions through shading of the chamber and the
PAR sensor with a mesh material. One mesh cover created 25% shading and a second cover
imitated up to 48% covered conditions. Ecosystem respiration (Reco) was determined 8 to
10 minutes after full light conditions were captured, by blocking all incoming PAR with an
opaque tarp covering both the chamber and PAR sensor. Between each measurement
imitating different light conditions, the chamber headspace was vented to adjust to ambient

conditions.

2.4.4 CHj4 emissions

CH4 fluxes were measured bi-weekly eight times each year between 17 May and 28
September 2017 and between 14 May and 24 August2018. CHs concentration was
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determined using a closed static chamber technique with opaque polyethylene chambers of
the same dimensions as for CO> measurements. Chambers were darkened with standard
spray-paint, aluminum-colored to reduce heating during the flux measurement. Chamber
equipment included one standard computer fan for air circulation connected to an external
12 V battery, a thermocouple connected to an external thermometer and one tube with a
three-way-valve in order to extract gas samples. All wires and tubes exited the chamber via
a rubber plug that fills a hole (5 cm diameter) in the chamber top. At the same time, the rubber
plug served as a regulator for possible build-up of air pressure inside the chamber when fitting
the chamber to the collar. Again, water poured into the u-profile rim of the collar created an
airtight seal of the chamber headspace. Gas samples were taken at 7, 15, 25, and 35 minutes
after chamber closure using a standard 20 ml disposable syringe connected to the three-way-
valve. A 20 ml gas sample from the chamber headspace was stored in a 12 ml round bottom
Exetainer vial with a septum lid (Labco Limited, Lampeter, Wales, UK). The created
overpressure was necessary in order to prevent any ambient air leaking in. Also, septum lids
were discarded after the third use, in order to prevent any leakage due to repeated piercing.
Gas samples were sent to the Wetland Soils and Greenhouse Gas Exchange Laboratory at the
University of Waterloo, ON for analysis. Analysis for CH4 concentrations was done with a
Shimadzu GC2014 gas chromatograph equipped with a flame ionization detector (Shimadzu

Scientific Instruments, Kyoto, Japan).

2.4.5 Environmental parameters, soil and water chemistry

At each plot, manual measurements of WTL and soil temperature were taken biweekly at the
same time as flux measurements. Water level was measured at each spot in perforated pipes,
serving as well-tubes that were covered with nylon mesh to prevent silting. These were
inserted about 50 to 100 cm deep into the ground. Soil temperature was measured at 2, 5, 10,
15, 20, 25, and 30 cm with a thermocouple probe temperature sensor and reader (Digital
thermometer, VWR, Radnor, PA, USA). Water chemistry (pH and electrical conductivity)
was measured in August of both 2017 and 2018 with an Orion Versastar Advanced
Electrochemistry Meter (Thermo Fisher Scientific Inc., Chelmsford, MA, USA).

Soil samples were collected in August 2018 at each measurement spot and were analyzed for
plant available nutrient concentrations of ammonium (N-NH4"), iron (Fe), phosphate (P-
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PO4*), and sulphate (S-SO4*) as well as for DOC, as these elements were considered
indicators of nutrient status and redox state. Analysis for P-POs*, and S-SO4> were done
using a FIA Quikchem 8500 Series 2 (Lachat Instruments, Milwaukee, WI, USA). Fe and N-
NH;4" were analyzed via an ICP Agilent 5110 SVDV (Agilent Technologies Inc., Santa Clara,
CA, USA). Solutions for DOC analysis were produced via 1:3 soil to water mixtures from
soil samples taken within the top 10 cm at each plot. Filtration was done the following day
through a 0.45 um glass fiber filter and stored at 4 °C until being analyzed at the Physical
Geography Laboratory at the University of Calgary with a TOC-L analyzer (Shimadzu
Scientific Instruments Inc., Columbia, MD, USA).

Environmental data of soil temperature (GS3 sensor) and water temperature (CTD-10 sensor)
was continuously recorded via EM 50 data loggers (Meter Group Inc., Pullman, WA, USA)
from May to September 2017 and May to August 2018. Water tables were also continuously
measured with a levelogger (Solinst Canada Ltd., Georgetown, ON) inside a well tube, while
the atmospheric pressure for calculating corrected WTL was measured with barologgers
(Solinst Canada Ltd., Georgetown, ON) at each site. Additionally, continuous meteorological
data of air temperature, precipitation (ECRN-100 sensor), and PAR (PYR sensor) was
recorded. At Cold Lake, the data recording station was installed directly on the well pad,
whereas at Peace River, only environmental data was recorded on site, while the weather

station was set up at a nearby restored well pad (approximately 7 km distance).

2.4.6 Vegetation

The vegetation survey was done within the different study areas during the peak of the
vegetation period, in August of both monitoring years. The cover percentage of each
vegetation stratum, as well as the percentage of open water, bare peat and litter present, were
surveyed in all survey quadrats. For each stratum, an additional focus was put on important
plant groups, i.e., Ericaceae in the shrub stratum, sedges in the herbaceous stratum, and
Sphagnum sp. in the moss stratum. Within each study area, five vascular plant surveys were
done using a 1 m? survey quadrat and 20 Bryophyte surveys were done using a 25 x 25 cm
survey quadrat. According to the survey type, all plant species were identified to species level
while their respective percentage cover and height (in cm) were noted. We determined if a

given species, including vascular and bryophyte species, likewise, was characteristic of the
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different fen types found in Alberta, following Environment and Parks (2017). From here on

we refer to these species as fen typical plant species (FTP).

2.47 Data Analysis
Instantaneous CO: and CH/ fluxes

NEE (g CO.m2d') was calculated according to the linear change of measured CO,
concentration over time, considering collar surface area, chamber volume and air
temperature. Gross ecosystem productivity (GEP) was then calculated according to Eq. 1,

considering measured NEE and Reco,
GEP = NEE — R,.,. [Eq. 1]

Following the atmospheric sign convention, we use negative values to indicate uptake by the
ecosystem from the atmosphere, while positive values indicate the release of CO2 and CHa.
During data cleaning 1% of the data was discarded, including fluxes without a linear change

in concentration over time and negative values of ecosystem respiration.

CHs fluxes (mg CHsm?2d!) were calculated according to the linear change of CHs
concentration over time, in consideration of collar surface area, chamber volume and air
temperature inside the chamber. When concentration was low (<3 ppm) and changed less
than 0.5 ppm (precision of the sampling and analysis method), respective fluxes were set to
0. In cases where no obvious trend was recognized and where no linearity was achievable,
the flux data was rejected. Rejection occurred also in cases of a negative curve following
high starting values larger than 5 ppm. These fluxes are considered as evidence of ebullition
caused by ground disturbance during chamber placement and do not represent regular CHs4

fluxes. Following this data cleaning procedure, 5% of the data were discarded.

Statistical analyses were done in R 3.6.0 (R Core Team 2019). The package ‘ggplot2® was
used to create figures (Wickham 2016). Analysis of histograms, residuals and the Shapiro-
Wilk test for normality indicated that data was not normally distributed in all cases, but no
transformations were able to improve the distribution to normality. Despite the non-normally
distributed data, we are confident in reporting on one-way ANOVA results, because of the

ANOVA’s robustness, where we fit linear models with ‘microform’ as fixed factor and ‘plot’
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as random factor. We achieved additional validation by comparison with the results of a non-
parametric Kruskal-Wallis test. The Kruskal-Wallis test was validated with a Conover-Iman
post-hoc test after Bonferroni adjustment using the package ‘conover.test’ (Dinno 2017), and
results were consistent with the ANOVA output. Furthermore, we performed pairwise
comparisons using the ‘emmeans’ package and a Tukey Honest Significant Differences
(HSD) post hoc analysis with 95% confidence interval (Lenth 2019). We further performed
multiple comparisons of treatments between groups with the ‘agricolae’ package
(DeMendiburu 2019), in order to complete figures with letters for groups with statistically
significant differences. All ANOVAs for NEE and GEP included PAR values larger
than 1 000 pmol m2 s! to obtain rates for CO, uptake that were not limited by light
availability (Bubier et al. 2003). A statistical significance was accepted when p less than 0.05.

Environmental influence on greenhouse gas fluxes

Linear regressions were used to further investigate the effect of vascular plant and moss
cover, especially of FTP, and open water present in the measurement plots, using the Ime
function (linear mixed effects) in the ‘nlme’ package (Pinheiro et al. 2019). Regressions were
calculated between mean seasonal fluxes of CO2 and CHa, and nine independent variables
including water table level (WTL), soil temperature at 5 cm depth (STs), cover of FTP, and
of all plant functional types (trees, shrubs, ericaceous, herbaceous, sedges, mosses,
Sphagnum) and open water, litter and bare soil, while plot functioned as a random factor to
account for repeated measures over the two years. Package ‘MuMIn’ was used to determine
the marginal and conditional »* (Barton 2020). We used a principal component analysis
(PCA) to examine the variation among measurement plots considering biotic and abiotic data,
and furthermore to explain the variables’ contribution to the observed differences among the

plots.

Seasonal carbon balance

The seasonal carbon balance was estimated according to Eq. 2, where the seasonal GEP
(g CO2 m? h'') modelling was done following Baird et al. (2019), fitting a two-parameter

model with PAR values in a non-linear regression:
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@ X PAR X GPpgx
(a X PAR + GPpgy)’

GEP =

[Eq. 2]

The model parameters are given physical meaning as o represents the slope of a rectangular
hyperbola, O, and gross photosynthesis GPmax is the asymptotic limit theoretical maximum

(Baird et al. 2019).

Modelling ecosystem respiration (g CO> m? h'') was done following Renou-Wilson et al.
(2014), who considered WTL and STs in order to factor in the different microforms’ diverse

moisture regimes, using the Eq. 3:

Roeo = (a + (b X WTL)) X lexp <c X (TR;_TO - STS;()))], [Eq. 3]
where a, b, and ¢ are model parameters, Tz 1s the reference temperature of 283.15 K, and 7)
is the temperature at biological activation (227.13 K; Lloyd & Taylor 1994). Model
parameters a, b, and ¢ for the seasonal carbon models of GEP and ecosystem respiration were
calculated using the nonlinear least squares (nls) function in R. GEP and ecosystem
respiration were estimated in half-hourly intervals, averaged and summed for the growing

season between 17 May to 31 August 2017 and between 22 May to 5 September 2018.

The models’ form was evaluated considering statistically significant parameters and the

highest possible correlation coefficient between measured and modelled values.

For each collar we fitted an individual model per year, after exploration of the data suggested
that models’ fits were improved by dividing the data. Due to smaller GEP values caused by
springtime conditions such as low temperatures and less photosynthesizing vegetation cover
in the early season in 2018, we additionally divided the season into early season (22 May
until 5 June 2018) and late season measurements (6 June to 6 September 2018) for each study

area and fit separate models for each collar per season.

Seasonal CH4 fluxes were estimated by multiplying the measured mean flux values with the

number of days for each growing season, following Baird et al. (2019).
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2.5 Results

2.5.1 Environmental parameters, soil and water chemistry

The climatic conditions observed during the time of the study were well within the range of
the Dry Mixedwood ecoregion’s dry climate in Peace River, and the Moist Mixedwood
ecoregion’s humid climate in Cold Lake (Figure 2.3). During both years of data recording,
Cold Lake was characterized by about twice as many rain days as the region of Peace River
and even shows consistently higher precipitation data as compared to the 1981-2010 climate
normal average of about 213 mm and 246 mm (Environment and Climate Change Canada
2019). In both regions, the year 2018 was characterized by much wetter conditions than 2017.
Due to the higher precipitation in 2018’s field season, WTL in the restored areas and REF
were accordingly higher especially in the Peace River region (Table 2.2). We observed an
average rise in WTL of 10.4 cm in the restored areas, compared to an average rise of 5.6 cm

in the REF.
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Figure 2.3 Precipitation (mm) and air temperature (°C) measured at a meteorological station on restored in situ
oil sands well pads in the Peace River and Cold Lake Oil Sands, during the monitoring period (May 17 until
September 9) in the years 2017 (A + C) and 2018 (B + D).
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Table 2.2 Mean + SD of the water table level (WTL in cm), pH and electric conductivity (EC in uS/cm) in all
different restoration sectors on two former well pads in Peace River and Cold Lake and three reference
ecosystems. Negative values signify a water table below the soil surface, and positive values signify a water
table above the soil surface. Monitoring sectors according to Table 2.1.

Sector 2017 2018

WTL pHw) ECw) WTL pHw) ECw)
UNR 262+ 17 6.7+0 10153+1949 -274+11.6 3.6+02  604.7+39
PRI5 36.9+192  58+02 2456+2824  -152+95 34+03  4613+793
PRS 24.1+20.1 6+£0.5 1452.6+1329.9 14+52 3.6+02 2573.7+515.9
PRO-D/W 1844109  73+04  4587+55  202+113 74+0.1 341.5+13.2
PRO-E 1.7+3.8 69+04  687+450.6 19426 73+0.1 4763+232.7
CR 292+19.7  6.7+02 305+9.5 41.6+384 6+02 2453+110.2
SRF 16+3.9 71+04 4523+187  151+47 73+03 284.9+23.6
TRF 31493 6.8+02  478.8+9.5 55+10.6 53+0.1 329.8+49
BOG 257+133  48+03 5129+1058  -104+9.6 3.5+14 102.1+545

The restored areas PR5 and PR15 at Peace River, that were restored by partial removal of the
former well pad mineral soil, showed higher values of water pH and electric conductivity in
2017, compared to the water chemistry conditions of wooded fens at SRF and TRF adjacent
to Cold Lake, which had lightly more acidic but brackish milieu, with moderate salinity and
elevated electric conductivity (Table 2.2). In 2018, the pH of PRS and PR15 were lower and
comparable to the conditions of the adjacent acidic BOG. Here, the values were consistently
characteristic for ombrotrophic bogs throughout both years, with highly acidic and
oligotrophic conditions (Alberta Environment and Sustainable Resource Development
2015). In all other restored areas, PRO and CR at Cold Lake, fen conditions were maintained
throughout both years, where the electric conductivity of water declined in the second year
on average by 129 uS/cm compared to the previous year, and pH stayed quite stable
throughout both years. The same trend in the drop of electric conductivity and water pH can
be seen in UNR. TRF and SRF water chemistry remained quite consistent during both study
seasons, with high pH and slightly brackish conditions typical for fens.

Acidic soil conditions were maintained in all restored areas and BOG throughout 2018 (Table
2.3). The only outlier with a slight alkaline pH 8 was observed at UNR. Electric conductivity
of the soil remained notably higher in all unrestored and restored areas, compared to REF.
DOC in the REF was on average 19 mg/L higher than in the restored areas. Comparisons of

the average plant available nutrient concentrations of iron, ammonium, phosphorus and
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sulfur reveal mean concentrations found in the restored areas were below values found in
REF. Only the shallow open water area CR-D showed REF-equivalent concentrations. In
PR15 and PRS5 we noted exceptionally high sulfur concentrations (5608 and
1 638 mg/L respectively). Highest sulfur concentration found in the REF, was measured in

BOG-D.

Table 2.3 Mean = SD soil pH and electric conductivity (EC in uS/cm), as well as mean dissolved organic carbon
(DOC in mg/L) and plant available soil nutrient supply rates (in mg/L) of ammonium (N-NH4*), iron (Fe),
phosphorus (P-PO.) and sulfur (S-SO.%), in all monitoring sectors in 2018. BDL stands for values below
detection limit (detection limit for Fe=0.12 pg/L). Monitoring sectors according to Table 2.1.

Sector pHs) ECs) DOC N-NH;* P-POs S-SO. Fe

UNR 8+0.2 290 +27.6 n.a. 14.4 44.5 248 BDL
PR15 48+02 1109.8+870.8 5 33.6 85.6 5608.2 BDL
PR5 42+03 1442+753.3 6.3 21 113.7 16382 BDL
PRO-D 32+£04 378.7+17.2 5.8 15.9 58.2 12.2 2.43
PRO-W 33+x04 3443+£269 6.5 28.8 88.6 80.8  BDL
PRO-E 5+£2.1 348.7+11.5 10.8 11 76.4 9.7 BDL
CR-D 48+03 106.3+£13.3 8.6 168.6 267.5 32.5 0.55
SRF-D 49+£03 122542738 245 3649  330.6 95.7 543
SRF-W 4.6+02  76.1+329 155 3327 2965 692 297
TRF-D  5+0.1 86.7+58.5 n.a. 213 1822 89 176
TRF-W 49+02  68.7+20.2 na. 3566 3557 815 147
BOG-D 4+02 34.7+10.9 35 109 117.1 1002 219
BOG-W 2.9+0.6 389+3.6 28.8  126.8 85.2 952 0.90

According to the principal component analysis (PCA), the first two components explain
48,9% of the variation in biogeochemistry among study plots (Figure 2.4). Chemical
differences are represented in PC1, while PC2 depicts mostly the impact of vegetation and
hydrology. The Kaiser-Meyer-Olkin test for sampling adequacy of variables reached 0.57
(Dziuban & Shirkey 1974). Six of the 17 components showed an eigenvalue larger than 1,
accounting for more than 81% of the variation. The two variables with the highest loadings
are DOC and Fe concentration. A strong clustering according to microforms can be seen,
especially distinctive between the restored areas and REF (Figure 2.4). Restored areas and
REF are clearly separated along PC1 with REF sites having higher N-NH4", and lower S-
SO4* and electric conductivity. REF sites were further separated along PC2 depending on

differences in vegetation cover, hydrology, and pH. Restored areas where the mineral fill was
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removed or scraped to near surface level (PR0O) were closer to the REF along PC1 than those
areas with thicker mineral fill remaining. CR-W was separated from other sites along PC2

due to deep inundation.

PCA - Biplot
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Figure 2.4 Principle component analysis (PCA) of microforms, according to environmental controls of water
table level (WTL), soil temperature at 5 cm depth (STs), soil pH (pHs) and electric conductivity (ECs), water pH
(pHw) and electric conductivity (ECw), dissolved organic carbon (DOC), vegetation survey strata (shrubs, forbs,
mosses, water, litter, peat), and plant available soil nutrient supply rates (Fe*, NH4*, POs, SOs%). Strong
clustering of monitoring sectors can be observed. Monitoring sectors according to Table 2.1.

2.5.2 Vegetation

The total vegetation cover in restored areas ranges from 37% (PR5) to 80% (PRO-E),
compared to 68% to 95% in REF (Table 2.4). The high cover in PRO-E is due to bryophytes
covering 54%, which represents the highest moss cover in all study areas. The other restored
areas had similar mix of forbs and bryophytes, while no particularly dominant vegetation
stratum developed, ranging from a lowest 9% forb-cover in PRS5 to 45% bryophyte-cover in
PR-0-D/W. The shrub-cover of 16% in PR15 was nearly three times higher than in the
neighboring area PR5 (4%), while shrub species were planted in both areas equally during
the restoration process. Yet PRS5 is characterized by open water of 40% cover, while PR15

remains dry. On the other hand, an even higher rate of flooding of 93% water cover in PR-0-
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D/W does not seem to prevent a natural establishment of plants (67% total vegetation cover)
in this study area, of which 7% were shrubs. Considering the fen characteristic plant cover,
undisturbed fens TRF (74%) and SRF (77%) have more than double the cover compared to
the restored areas PR-15 (31%), PR5 (34%) and PRO-D/W (31%). Only for PRO-E, we can

report a fen characteristic plant cover (64%) comparable to REF.
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2.5.3 Greenhouse gas exchange and seasonal carbon balance

In 2017, fluxes of gross ecosystem productivity (GEP) were between -104.4 ¢ CO> m™ d! at
PR15-P, and -0.1 g CO> m? d! in SRF-D (Figure 2.5A). In 2018 on the other hand, lowest
GEP fluxes were measured in SRF-W (-89.6 g COom2d™"), and highest fluxes with -
0.2 g COom2 d!'in CR-W (Figure 2.5D). Net ecosystem exchange (NEE) in 2017 ranged
from -55.9 g CO,m2 d! in PR15-P to 34.6 g CO.m2 d! in SRF-W (Figure 2.5B), and in
2018 from -56.6 g CO, m?d ! in SRF-W to 20.6 g CO:m2d"! in CR-W (Figure 2.5E).
ANOVA results reveal a significant effect of STson GEP and ecosystem respiration in 2017,
which is repeated only for ecosystem respiration in 2018 (Table 2.5). Microform on the other
hand has a consistent significant effect on all fluxes, whereas WTL only has a significant
effect on all fluxes 2018. We notice that the wetter the microform, the higher the ecosystem

respiration fluxes (Figure 2.5C & F) and CHy4 fluxes.
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Figure 2.5 Measurements in all monitoring sectors during the monitoring season of 2017 (A-C) and the season
of 2018 (D-F) show the mean gross ecosystem production (GEP in g CO, m2 d?) at a photosynthetically active

radiation (PAR) photon flux density 21000 ymol m?s

st (A & D), the mean net ecosystem exchange (NEE in
g CO, m?d?; B & E), and the mean ecosystem respiration (Reco in g CO, m?2 d*; C & F). Groups with the same
letters are not significantly different. Statistical results of the ANOVAs for 2017 show GEP: Fi7, 350=16.43,
p<0.001, adj. r>=0.41; NEE: F17,376=14, p<0.001, adj. r’=0.36; Reco: F17,550=19.16, p<0.001, adj. r>=0.35. For flux
recordings in 2018 the ANOVA results reveal GEP: Fi7, 21,=4.38, p<0.001, adj. r=0.2; NEE: Fi7, 220=7.29,
p<0.001, adj. r>=0.31; Reco: F17,320=6.77, p<0.001, adj. r>=0.22. Monitoring sectors according to Table 2.1
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Table 2.5 Statistical results of ANOVAs for fluxes of carbon dioxide (CO,), presented for gross ecosystem
productivity (GEP), net ecosystem exchange (NEE), and ecosystem respiration (Rec), and methane (CH.) for

2017 and 2018.
Year Component Effect F statistics p-value Adjusted 7
2017 GEP Fi7350=16.43 <0.001 0.41
Microform Fis5350 =17 <0.001
Soil temperature 5 cm Fi350=24.18 0.000
Water table level Fi350=0.21 0.65
Reco Fi7550=19.16 <0.001 0.35
Microform Fis5550 = 15.62 <0.001
Soil temperature 5 cm Fis550=91.15 <0.001
Water table level Fi1550=0.23 0.63
NEE Fi7376 = 14 <0.001 0.36
Microform Fis5376 = 15.7 <0.001
Soil temperature 5 cm Fi376=2.41 0.12
Water table level Fi376=0.01 0.91
CH4 Microform Fi5200=6.75 <0.001 0.22
2018 GEP Fi7212=4.38 <0.001 0.2
Microform Fi5212=4.05 0.000
Soil temperature 5 cm Fi212=2.04 0.155
Water table level Fi212=11.75 0.001
Reco F17320=16.77 <0.001 0.22
Microform Fis5320 =6.41 <0.001
Soil temperature 5 cm Fi320=15.52 <0.001
Water table level Fi320=3.47 0.063
NEE F17220=7.29 <0.001 0.31
Microform Fi5,200=6.86 0.000
Soil temperature 5 cm Fi1,200=0.26 0.609
Water table level Fi1200=20.74 0.000
CH4 Microform Fisp83=7.54 <0.001 0.25

108



CH4 emissions were especially high at all submerged and regularly flooded measurement
plots that occurred at CR, SRF, TRF-W (Figure 2.6). The same trend can be noted for
extremely wet plots close to the WTL, like PRO and PRS. Microform showed a significant
effect on CHy4 fluxes (Table 2.5). Microforms with highest WTL showed significant effects
on CHj4 fluxes, where highest averaged CHs fluxes of 417 + 476 mg CHs m2d™!) in TRF-W,
398+ 711 mg CHs m2d! in CR-W, 354+608 mgCHsm?d! in SRF-W, and
199 + 294 mg CHs m2d! in SRF-D were observed. The lowest fluxes on the other hand were
recorded at the driest sites with 7 =20 mg CHs m2d! in BOG-D, 1+ 5 mg CHs m2d"! in
BOG-W, 2 = 8 mg CHs m2d! in PR15-P, and 7 = 19 mg CHs m2d! in PR5-P.

In particular, CR-W was not comparable with the other restored areas and behaved in a
completely opposite manner, where specifically NEE and GEP in CR-W differed
significantly from all other plots. CHs fluxes in CR-W and the reference fens showed

similarities, whereas all other restored and unrestored areas were comparable to BOG.
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Both linear regression analyses to evaluate spatial variation in NEE and CHg4 fluxes based on
environmental variables, such as vegetation strata, WTL and STs were found to be significant
(Table 2.6). While for NEE the significant variables were STs, shrub cover, and forb cover,
the significant variables to predict CH4 fluxes were STs, WTL, cover of ericaceous, and cover
of sedges. The higher the cover of these plant functional types, the higher the emission rates
observed in the respective study area. Despite wetter and colder weather conditions in 2018,
we did not observe a significant effect of climate on CHs emissions. Compared to the first
year, CH4 fluxes actually decreased by almost 45% in 2018. Furthermore, we cannot confirm

any significant relation between NEE or CH4 fluxes and FTP.

Table 2.6 Statistical results of multiple linear regressions to predict net ecosystem exchange (NEE) and methane
(CHy) fluxes in 2017 and 2018, based on soil temperature (at 5 cm depth), cover of vegetation strata, and water
table level. Marginal r’m shows the proportion of variance explained by the fixed factors alone, while the
conditional r?) describes the proportion of variance explained by fixed factors and the random factor ‘plot’.

Component  Effect F-value p-value SE m) )
NEE Intercept F1.46=69.64 <0.0001 5.84 0.22 0.67
Soil temperature F14=2.24 0.142 0.29
Shrub cover Fi14=15.46 <0.001 0.09
Forb cover F14=8.64 0.005 0.06
CH4 Intercept F1,47=56.26 <0.0001 108.83 0.44 0.46
Soil temperature Fi,44=24.47 <0.0001 6.84
Water table level F14=39.22 <0.0001 0.58
Ericaceous cover F1,42=6.69 0.013 1.07
Sedge cover Fi4=4.74 0.035 1.58

Modelled seasonal NEE revealed restored areas and REF to be greater C sources in 2017
than in 2018 (Table 2.7). A cumulative two-year total C balance shows that C sinks have
established in the restored areas closest to the WTL, in PR5, PR0-D and PRO-E, and CR-D,
ranging from -625 to -67 g C m% (Table 2.8). On the contrary, very wet areas with inundated
conditions, such as PRO-W, CR-W, and SRF acted as C sources with C emission up to
1039 g C m2. Very dry areas, such as PR15 and UNR also act as C sources.
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Table 2.7 Cumulative seasonal carbon fluxes of methane (CH.), and net ecosystem exchange (NEE) as a
product of gross ecosystem production (GEP) and ecosystem respiration (Reco), for all monitoring sectors in
2017 and 2018. Both seasonal calculations were done for a period of 107 days (17 May 2017 to 31 August 2017
and 22 May 2018 to 5 September 2018). Monitoring sectors according to Table 2.1.

May — September 2017 May — August 2018
i;f ctf iorm GEP Rwo NEE CHy Totaly; GEP Reo NEE CHy  Totaluns
(g Cm?) (g Cm?)

UNR 394 506 112 07 113 -487 574 87 08 88
PRI5 322 368 47 14 48 348 368 21 07 2
PR15-P 525 559 34 02 34 512499 13 02 13
PRS 339 285 54 35 51 416 346 <70 6.1 .64
PRS5-P 329 282 -47 06 46 342 224 <118 07 -117
PRO-D 417 314 <103 3.9 .99 323 110 213 1.8 -211
PRO-W 160 206 46 6.6 53 216 580 365 33 368
PRO-E 421 420 2 33 1 443409 34 11 33
CR-D 475 348 -127 72 -120 375 284 91 58 85
CR-W 39 333 294 319 326 27225 198 217 220
SRF-D 606 715 109 16 125 407 638 231 4.6 236
SRE-W 652 671 19 284 47 606 561 -45 119  -33
TRF-D 219 299 81 27 84 150 334 184 37 188
TRE-W 578 418 -160 334 -127 454 283 -171 143 -157
BOG-D 204 358 155 0.6 156 -283 377 94 08 95
BOG-W 184 262 77 0.1 77 337 248 -8 0 -88
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Table 2.8 Cumulative two-year total carbon (C) balance and global warming potential (GWP) for two 107-days-
research seasons in two consecutive years (17 May 2017 to 31 August 2017 and 22 May 2018 to 5 September
2018). Calculations of the total C balance include C fluxes of methane (CH.), and net ecosystem exchange
(NEE) as a sum of gross ecosystem production (GEP) and ecosystem respiration (Reco). Monitoring sectors
according to Table 2.1.

Status Sector Total C GWP
balance
(2 Cm?) (g COz-e)
Well pad UNR 201 735
PR15 70 257
Restored 2009 PR15-P 71 73
PR5 -114 -419
Restored 2009 PR5-P 164 600
PRO-D -310 -1138
Restored 2008 PRO-W 421 1543
PRO-E -32 -116
CR-D -205 =752
Restored 2007 CR-W 546 2001
SRF-D 361 1322
REF SRF-W 14 52
TRF-D 271 995
REF TRF-W -283 -1039
BOG-D 250 918
REF
BOG-W -11 -40
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2.6 Discussion

Reestablishing hydrological conditions has become the main goal in peatland restoration
(Bonn et al. 2016). However, several studies report an increase of CHy rates during the first
years of rewetting of sites previously drained and used for peat extraction, due to higher
methanogenesis activity (Jordan et al. 2016; Nugent 2019). Reported greenhouse gas fluxes
of restored peatlands range from -90 to -30 g CO,-C m2 d!'and 3.7 to 4.2 mg CH4-C m d!
(Strack et al. 2014; Abdalla et al. 2016; Nugent et al. 2018). On the contrary, rates of NEE
and CHg4 for undisturbed peatlands in the Mixedwood region of the Canadian boreal forest

range from -7.6 to -3.1 g CO, m 2 d ! and 3 to 65.8 mg CHs m 2 d™! (Webster et al. 2018).

Since complete removal of introduced in situ well pad construction materials creates open
water areas that are not representative of pre-disturbance conditions, we hypothesize that this
technique would not be beneficial for peatland restoration efforts and would likely increase
C emission rates. We further hypothesized that the emergence and a high abundance of fen
characteristic plant species post-restoration, as well as biochemical attributes comparable to

REF, would enable the return of net C uptake in restored areas at rates similar to nearby REF.

2.6.1 Fen typical vegetation not improving C uptake, whilst need for shrub species

Biochemical conditions, specifically nutrient concentrations, differed greatly between REF
and restored areas. REF were characterized by high ammonium, phosphate and iron
concentrations and did not compare to any restored area. The sulfur concentration of only
one restored area, PRO-W, was comparable to the REF fens, while sulfur concentrations of
all remaining restored areas were very different than REF. It is likely that the extremely high
sulfur concentrations in PR15 and PRS to sulfur compounds in the well-pad materials
leaching through the root zone and being held in place by the clay layer (Himes 1998), used
for infilling the well pad, which does not allow an exchange between the mineral clay and
the peat layer underneath. This effect might be enhanced through decomposing organic
matter at the surface, considering the high cover percentage of plant litter (63%) and the low
WTL in both areas. These processes would also explain the low pH in the same study areas

despite the residual mineral soil (pH 3.4 in PR15, pH 3.6 in PR5) in the second drier year
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2018. Indeed, during drier conditions, H" ions might have been produced and dissolved,

acidifying the milieu (DeVries & Breeuwsma 1987).

Soil chemistry post-restoration is comparable to characteristic poor fen (pH lower than 5.5
and electric conductivity lower than 100 uS cm™) and moderate-rich fen conditions (pH 5.5
to 7 and electric conductivity 100 to 250 puS cm™) that come with the acidic and moist
environment (Alberta Environment and Sustainable Resource Development 2015). The
exceptional high values of electric conductivity of the soil in PR5 and PR15 might be due to
the remnants of various soil amendments, i.e., the application of commercial peat, field peat,
slough hay, or woodchips, applied during the restoration work in 2007 (Vitt et al. 2011). We
note that the chemical conditions depicted for CR depicts conditions found in CR-D and no

represent well CR-W, because soil sampling was not possible in deep water.

Despite the chemical differences found in the study sites, vegetation re-established among
all restored areas. We observed a fen-like vegetation recovery in areas that were most closely
leveled with the WTL of the surrounding ecosystem. This effect was especially true of the
moss layer. However, we could not confirm a higher abundance of fen characteristic plant
species the closer the restored areas are levelled to the WTL. We had expected to observe a
gradient of low abundance of fen characteristic plant species in the areas with a highest
distance to the WTL, PR15, to a high abundance of fen typical species in the areas with the
shortest distance and most even level to the WTL, PRO-E. Indeed, the highest cover of fen
typical species in restored areas (64%) was observed in PRO-E, but among the remaining
areas with partially and completely removed mineral soil, and even UNR, there was no
difference in the fen typical species cover. WTL is an important driver of vegetation re-
establishment on residual mineral soil (Vitt et al. 2011; Howie et al. 2016), but it does not
appear to be a crucial factor for fen characteristic plant species to distribute. While Halsey et
al. (1998) consider the mineral soil’s larger grain size (i.e., glaciofluvial and eolian deposits)
with high hydraulic conductivity to be an important driver for peatland development, our
findings indicate that achieving an elevation similar to the surrounding peatland is likely

sufficient for the establishment of typical fen plant communities.
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Furthermore, we cannot confirm that the cover of fen typical plants improved the C sink
function considerably. In fact, we found no significant relationship between the cover of fen
typical plants and either CO2 or CH4 exchange. While the species composition in PRO-E was
most comparable to a REF and the C sink function seems to have returned to this area, CHs
fluxes were not drastically decreased. This might be due to the high cover of sedges (24%),
such as Carex spp. and T. latifolia, with their large aerenchymatic systems and abundant root
biomass that are known to promote CO; emissions and are more likely to enhance C
emissions to the atmosphere rather than C uptake (Bellisario et al. 1999; Strack et al. 2016;
Rupp et al. 2019). These species were also well-established in the areas with partially
removed mineral soil, PR15, PR5 and PRO. Overall, it appeared that the presence of plant
cover in general and the position of the WTL were the drivers of the net C balance observed

in each restoration treatment.

On the contrary, other studies show that species identity, and especially the presence of C.
aquatilis was important for C sequestration at restored fens, specifically in combination with
bryophyte species (Hassanpour Fard et al. 2019; Murray et al. 2019). The floating moss
carpet CR-D displays very well the positive effect of this combination of fen typical
vegetation on C accumulation and greenhouse gas fluxes, where the total C emission rates of
the emerging floating moss carpet in CR-D (>7.2 g C m2d!) are almost 85% lower than in
the open water areas CR-W. The development of the floating moss carpet in this study area
was favored by proximity to the adjacent peatland with bryophytes able to grow out from the
edge of the open water area, but this result cannot be applied in case of the removal of an
entire in situ well pad of 1ha where much of the area would be far from the edge. In that case,
the development of vast shallow open water will cause wave development and too rough
water movements for a moss carpet to establish (Blievernicht et al. 2007; Gaudig et al. 2013).
At the same time the vegetation that developed in CR-D accommodated the second highest
cover rate of fen characteristic plant species (7%), including species such as C. aquatilis,

C. diandra, Drepanocladus aduncus, D. polygamus, and Menyanthes trifoliata.

The highest C sink was found in PRO-D, an area defined by a vegetation community
including shrub and sedge species. Fen characteristic plant species in this study area included

Andromeda polifolia, B. pumila, C. limosa, C. utriculata, C. palustre, P. pseudotriquetrum.
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Opposed to herbaceous species, shrub species store C in their woody structures and in
combination with their smaller root structure, emit lower rates of CO» to the atmosphere
(Rupp et al. 2019). Furthermore, because of their overwintering photosynthesizing leaves,
shrub and bryophyte species have the advantage to begin C uptake early in the growing
season before herbaceous plant species (Arndal et al. 2009). The regression analysis also
indicated that shrubby plant species had an effect on NEE and CH4 fluxes. In PRO-D, CR-D,
and PR5-P, we observed the same trend of highest C uptake, compared to the other restored
areas that act as a C source. Especially in these three study areas similar plant species
composition had established, with high cover of C. aquatilis in combination with various
shrub (PR0O-D) and bryophyte (CR-D) species. However, we note that both REF fens TRF
and SRF, despite a high cover of shrub species (31% and 32% shrub cover, respectively) in
combination with high WTL (32% and 37% open water respectively), were carbon sources.
We note, however, that the tall overstory trees of both wooded TRF and BOG were not
included in our C flux measurements, which would contribute additional C uptake to the
system. Furthermore, tree root respiration rates in TRF and BOG were not considered in our
measurements and likely contributed to the ecosystem respiration measured indicating that
actual NEE needs to be adjusted according to previous research. Munir et al. (2017; 2015)
report on tree root respiration rates in an ombrotrophic bog in Alberta ranging from
2 + 0 g CO,-C m in ambient hollows to 70 + 6 g CO»-C m™ in warmed hummocks. Several
studies describe a strong relation between tree productivity and hydrology, where
belowground production and root respiration rates were enhanced in drained conditions

(Hanson et al. 2000; Hermle et al. 2010; Munir et al. 2017).

Despite the apparent importance of shrubs, the introduction of plant species in some areas,
even including Salix spp. species, does not seem to have specifically improved the C
sequestration at the respective areas. Considering the high percentage of bare soil in both
PR5 (22%) and PR-15 (16%), as compared to a maximum of 3% bare soil in PRO-D/W, the
revegetation effort does not seem to be more successful than natural and spontaneous
revegetation (Prach & Hobbs 2008), which is favorable if landscape factors, such as WTL
and a nearby abundant species pool, are considered during the restoration process
(Konvalinkova & Prach 2014). This effect can be seen in the mean cover of FTP, such as B.

pumila, C. aquatilis, C. diandra, C. palustre, Campylium stellatum, S. warnstorfii, T. nitens,
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being almost twice as high in PR-0 (43%) where no plants were introduced compared to PR5
(24%) and PR15 (22%) where planting occurred. The combination of shrub species and a
stable WTL at the soil surface, as can be found in PR0O-D, seems to provide best results in
returning a C sink function to restored areas, as well as establishing biochemical conditions
comparable with REF fens. This effect seems to have greater impact on C exchange, rather
than the variable climatic conditions, since despite wetter and colder conditions during the
second year, GEP rates were higher than in the previous year with lower precipitation rates

and warmer temperatures (Strack et al. 2016).

2.6.2 Enhanced CH4 emissions after complete well pad removal

Our third hypothesis that a complete in situ well pad removal would enhance CH4 emissions
was confirmed through highest emission rates observed in the open water area CR-W (21.7
to 31.9 g C m2d"!). PRO-W, TRF-W and SRF, with WTL above ground surface, show
comparable emission rates of 11.9 to 33.4 ¢ C m2d!. While such high CHs4 emission rates
are normal in undisturbed fens with high water table (Waddington & Roulet 2000; Strack et
al. 2006; Bienida et al. 2020), adjusted management practices are available to avoid
unnecessary high emission rates in restored wetlands (Strack et al. 2014), just as it has been
done in the drier managed microforms PRO (<3.9 g C m2d!), PR5 (<6.1 g C m2d!), PR15
(<1.4 g Cm2d"'), which low emission rates endorse this argument. Considering the
enormous global warming potential (GWP; Myhre et al. 2013) of the wet areas of up to
3807 g CO2-e in CR-W (Table 2.8), the drier managed sites ranging between -556 g CO»-e
and 326 g COz-e prove to be a powerful argument to pay attention to proper site management
and hydrological adjustments. Furthermore, Giinther et al. (2020) show that rewetting of
drained peatlands should not be feared or avoided, because the positive effects of rewetting
for restoration purposes outweighs the rather short-lived radiative forcing of CHa, as opposed
to the long-lived impacts of CO; emissions, when sites remain too dry, and the long-term

benefits of recreating net C accumulating ecosystem through restoration.

2.7 Conclusion

After eight to eleven years following restoration, the rates of C exchange in the restored areas

were comparable with the rates of long-time established REF, although the soil and water

118



chemistry remained quite different due to the residual mineral soil layer. Regarding our
results, we conclude that the C uptake in restored areas is most similar to reference peatlands,
when vegetation has established and particularly when regional wetland typical shrub species
have colonized. The crucial base for vegetation communities to emerge is the proper
hydrological management of the site, where the surface elevation should be evenly adjusted
to the surrounding ecosystem and as close to the landscape surrounding WTL as possible. It
appears that in order to have appropriate chemical fen conditions establish post-restoration,
available plant organic matter needs to remain in anaerobic conditions and therefore the WTL
is crucial to remain near the surface. However, the development of open water areas is to be
avoided at all times. As was observed in flooded conditions in PRO-W where the WTL is
higher than 30 cm above surface, and in the shallow open water areas CR-W, with a WTL
larger than 77 cm above surface, hydrological conditions appeared to be less beneficial to fen
plant establishment while driving C emissions, resulting in high rates of ecosystem
respiration and CH4 emissions. It is therefore crucial during future restoration work, to level
any residual layers of remaining mineral soil with the adjacent peatland ecosystem, in order
to obtain a seamless connection and create optimal hydrological conditions in the restored
area. Reintroduction of (shrub) species can be neglected, if appropriate hydrological
conditions are achieved and a source of peatland plant species is available in adjacent wetland

ecosystems.

The assessment of the biogeochemical and biochemical conditions in the restored areas
should continue on a regular, long-term basis in order to monitor the effect of the developing
fen vegetation and associated peat accumulation on the soil chemistry. Long-term monitoring
is important to maintain in the context of peatland development, as these ecosystems may
take several decades to centuries to establish. We again stress the importance of individual
management and soil adjustment for a hydrological connection of restored peatlands

following in situ oil mining well pad disturbances.
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2.10 Appendices

Appendix 2.1 The study sites, two restored in situ oil sands well pads, situated within the Oil Sands regions of
Peace River and Cold Lake. Both sites are located in the Boreal Mixedwood ecoregion of boreal Northern
Alberta.
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Appendix 2.2 All study sectors in the Peace River and Cold Lake Oil Sands regions. A) An unrestored sector
(UNR) on the Cold Lake well pad served as a control, where measurements took place on the remaining well
pad’s mineral soil (MS). Restored sectors are B) CR: Complete removal of MS with a floating moss carpet, C)
PR15: Partial removal of MS to 15 cm above seasonal water table, D) PR5: Partial removal of MS to 4 to 6 cm
above seasonal water table, E) PRO-D/W: Partial removal of MS to surface elevation of surrounding fen
reference ecosystem (uneven ground relief), F. PROE: Partial removal of MS to same surface elevation of
surrounding fen reference ecosystem (even ground relief). Reference ecosystems (REF) were G) SRF: a
shrubby extreme-rich fen, H) TRF, a wooded rich fen, and I. BOG: a wooded bog.
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Chapter 3 Organic matter production and decomposition
in restored fens following in situ well pad
disturbances

3.1 Résumé

La restauration écologique vise a rétablir et a initier le développement successif de fonctions
et de processus caractéristiques d’un écosystéme. Dans le cas des tourbiéres perturbées c’est
souvent la fonction d'accumulation de tourbe. Dans cette étude, nous avons documenté le
potentiel d'accumulation de tourbe de cing zones restaurées a la suite des perturbations
causées par des infrastructures de plateforme de forage in sifu, en comparaison avec trois
tourbieres de référence non perturbées et une zone non restaurée. L'accumulation de tourbe
a été calculée au moyen de la productivité primaire nette et des taux de décomposition. La
production de biomasse aérienne a été estimée en utilisant le pic de récolte sur pied a la fin
de deux périodes de végétation. La production de racines souterraines a été¢ mesurée a l'aide
de sacs de croissance incubés sur une période de deux ans. La décomposition a été estimée
en utilisant la méthode des sacs de litiére végétale avec une incubation sur une période de 23
mois. Les résultats montrent que l'accumulation de tourbe revient dans les tourbiéres
restaurées malgré le remplissage minéral résiduel, en particulier dans les zones de
développement des bryophytes. Nous avons constaté que I'élimination partielle du remblai
minéral favorise I'accumulation de tourbe et la séquestration du carbone, car les conditions
hydrologiques et le développement de la végétation fournissent un apport de biomasse et des
conditions anoxiques pour une décomposition lente. L'enlévement compléte d’une ancienne
plateforme de forage a créé une zone d'eau libre peu profonde, avec des conditions
semblables a celles des marais, qui inhibe I'accumulation de tourbe en raison de la faible
production de matiere organique végétale et de la décomposition rapide.
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3.2 Abstract

Ecological restoration aims at returning and initiating successional development of
characteristic functions and processes, like peat accumulation, to disturbed peatlands. In this
study, we documented the peat accumulation potential of five restored areas following
disturbances caused by in situ well pad infrastructures, compared to three undisturbed
reference peatlands and an unrestored area. Peat accumulation was calculated by means of
net primary productivity and decay rates. The above-ground biomass production was
estimated using the peak standing crop at the end of two vegetation periods. Below-ground
root production was measured with ingrowth bags incubated over a two-year period.
Decomposition was estimated using the plant litter bag method, with incubation for a period
of 23 months. Results show that peat accumulation returns to restored peatlands despite
residual mineral fill, especially in areas with bryophyte development. The complete removal
of a former well pad resulted in a shallow open water area, with marsh-like conditions, which
inhibits peat accumulation because of little plant organic matter production and fast
decomposition. We found the partial removal of the mineral fill to support peat accumulation
and carbon sequestration because hydrological conditions and vegetation development
provide biomass input and anoxic conditions for slow decomposition.
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3.3 Introduction

The Canadian landscape is characterized by about 1.1 million km? of peatland ecosystems,
which are particularly abundant (64% of Canadian peatlands) within the boreal forest
(Tarnocai et al. 2011; WCS Canada 2021). However, these vast boreal peatland regions are
vulnerable to disturbance by the oil and gas industry within the extensive oil sand regions of
northern Alberta, especially to in situ (“in place”) bitumen extraction activities. As of 2016,
in the Oil Sands regions of Alberta, a land area of about 39 000 km? have been under
operation by the oil and gas industry, while the designated total in situ mineable area equals
approximately 142 000 km? (ABMI 2018). In situ oil extraction requires a vast network of
exploration sites and roads, bitumen storage facilities and processing plants, in situ oil sands
well pads supporting the bitumen well heads, connecting access roads, and pipelines. As of
October 2021, there are combined more than 329 000 in situ wells (157 000 active and
172 000 inactive/abandoned) in Alberta that will require restoration work in the future (AER
vegetation is cut down, especially larger trees and shrubs, and covered with a geotextile
before a compacted mineral soil mix of sand, loam, clay, a gravel is put in place. The
decommissioning of an in situ oil sands well pad after an average lifespan of about 20 to 30
years includes the sealing of the wells and dismounting of oil extraction equipment such as
well heads and pumping jacks (CAPP 2021). Since 2015, peatland restoration is obligate and
aims at returning pre-disturbance functions such as wildlife habitat, peat accumulation, and

carbon sequestration (Government of Alberta 2013; Environment and Parks 2017).

Peatland restoration following in sifu oil sands disturbances started in the 2000’s, with
different restoration techniques being tested. Restoration trials included 1) the complete
removal of all well pad construction materials following one of the restoration ecology
principles to first eliminate any further disturbance (“CR” hereafter), 2) the inversion of
underlying peat layers with the upper former in situ well pad’s mineral fill, and 3) the partial
removal of the mineral fill to near the water table (“PR” hereafter). The CR technique aimed
at exposing the peat that was buried and compacted underneath the mineral fill and reinstating
suitable substrate with respective biochemical conditions to support characteristic peatland

vegetation (Imperial Oil Resources 2017, personal communication; Xu et al. 2021). In one
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restoration trial, the buried peat was decompressed and then revegetated following the steps
of the moss layer transfer technique, where fragments of peatland characteristic vegetation,
specifically mosses such as Sphagnum spp. L. and Polytrichum strictum Menzies ex. Brid.,
were introduced (Quinty & Rochefort 2003; Xu et al. 2021). In another trial, the depression
that was created during the process of CR filled up quickly with inflowing water from
surrounding wetland ecosystems and a shallow open water area formed instead (Imperial Oil
Resources 2017, personal communication). The inversion of the buried peat and the upper
compacted mineral fill resulted in underlying peat to resurface and provide peat substrate for
introduced peatland bryophyte species (Xu et al. 2021). The PR technique on the other hand,
was inspired by the way peatlands initiated their formations on mineral soil via paludification
following the glacial era (Halsey et al. 1998; Vitt et al. 2011). PR aimed at reinstating early
wetland characteristic hydrological conditions to initiate the development and succession of
fen ecosystems by stripping the upper soil layers of the well pad down to near the water table

level (Vitt et al. 2011).

Functional, undisturbed peatlands are characterized by ongoing carbon (C) sequestration
during the peat accumulation process. Peat accumulation is only possible if C uptake via
gross ecosystem productivity and plant biomass production exceeds the C loss via ecosystem
respiration and organic matter decomposition. In functional peatlands, the process of
decomposition is delayed due to low temperatures and oxygen (O2) deprivation reducing
most microbial activity except of adapted microorganisms including those that produce
methane (CHa) as a consequence of anaerobic respiration. Due to the preservation of organic
matter in the anoxic layers of water-logged peat, undisturbed peatlands are efficient C storing
ecosystems with a C density of 1048 to 1441 million g C ha! (Tarnocai et al. 2011).
Specifically, the continental western Canadian peatland carbon stock has been estimated at
48 billion g C (Vitt et al. 2000). The rate of the ongoing soil carbon uptake in Canadian
peatlands is estimated at 190 000 g C ha! yr'! (19.4 gC m?2yr! for western Canadian
peatlands; Vitt et al. 2000; Rydin & Jeglum 2013). C uptake via net primary productivity
(NPP) and loss through decomposition largely depend on the interaction of biotic and abiotic
factors, in particular hydrology, nutrient availability, biochemistry, vegetation community
composition, and the activity and composition of decomposing microbial communities
(Laiho 2006; Vitt 2007; Mitsch & Gosselink 2015).
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In western Canadian bogs, above-ground NPP of 198 to 674 ¢ m2 yr'! and a below-ground
root production of about 26 to 60% of the total NPP have been observed (Thormann et al.
1999; Weltzin et al. 2000; Vitt et al. 2001). Research shows that more than 50% of the
litterfall is returned to the soil following initial decomposition (Wardle et al. 2004), but no
linear relationship has been found between NPP and soil organic matter accumulation
(Jackson et al. 2017). Mass loss of 33 to 46% after one year has been observed in west
Canadian bogs, indicating a slow decomposition rate (Thormann & Bayley 1997b). Organic
matter accumulation in bogs has been observed to happen at a rather low rate of 59 to
270 g m? yr'! due to recalcitrant plant litter quality that slows decomposition (Thormann et
al. 1999; Frolking et al. 2001; Turetsky et al. 2007). Strakova and colleagues (2011) argue
that the lower decomposition rates of organic matter found in bogs are due to the low activity
of extracellular enzymes produced by microbes that are found in litters of characteristic bog
plant species, in particular Sphagnum spp. L. and ericaceous plants, compared to the activity
found in vascular plants’ litter. Despite the low productivity the C accumulation rate in bogs
is higher, compared to highly productive fen ecosystems due to reduced decomposition rates
in the former (Turunen et al. 2002; Laiho 2006). C accumulation rates in bogs have been

estimated at 33.4 to 95 g m? yr'! (Thormann et al. 1999).

Rich fens, on the other hand, have higher water table levels and mineral content compared to
bogs, and provide habitat for high productive vegetation communities. Numerous vascular
herbaceous and sedge species growing in fens provide above-ground biomass at NPP rates
of 214 to 1050 g m? yr'! (Thormann & Bayley 1997a; Vitt et al. 2001, 2009). The root
productivity in fens, especially of productive sedge species such as Carex spp. L. and
Eriophorum spp. L. has been estimated at 55 to 86% of the total NPP (Weltzin et al. 2000).
Fens have a much higher decomposition rate than bogs in west Canada, where organic mass
loss ranges from approximately 45 to 83% during the first year (Thormann & Bayley 1997b).
Hence, organic matter accumulation rates in west Canadian rich fens have been estimated at
126 to 254 g m? yr'! (Thormann et al. 1999; Vitt et al. 2009). C accumulation rates in rich

fens have been estimated at 14 to 122 g m yr'! (Thormann & Bayley 1997a).

The aim of our study was to evaluate the peat accumulation potential of restored peatlands

following disturbances caused by in situ oil and gas infrastructures via the net primary
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productivity (NPP) and organic matter decay. The results will help to understand
corresponding data from earlier studies on C sequestration in the same study areas. Five study
areas were selected for this research on two former in situ oil sands well pads in the Peace
River and Cold Lake Oil Sands regions of Alberta where peatland restoration had been
achieved via the complete (CR) and partial removal (PR) technique. Three study areas (CR
and PR treatments) had been left for natural ingress of migrating diaspores, while two study
areas (PR treatment) were actively revegetated through planting of characteristic peatland
species. We assessed the plant biomass produced above- and below-ground and the
remaining plant matter following decomposition during two study years in the five restored
peatland study areas. Results were compared to an unrestored area on the former in situ well
pad and three undisturbed reference peatlands. Our research questions were: 1) Which
technique of mineral fill removal is necessary to support peat accumulation? 2) Is
revegetation of peatland plant species necessary to return peat accumulation potential? 3) Do
vegetation communities return to restored peatlands that have potential peat accumulation

rates comparable to undisturbed reference peatlands?

3.4 Materials and Methods

3.4.1 Study sites

The research was carried out on two decommissioned in situ well pads situated in the Oil
Sands regions of Peace River (56°23'0.95" N, 116°46'43.43" W) and Cold Lake
(54°41'10.82" N, 110°30'59.75" W) in the boreal forest of northern Alberta (Appendix 2.1).
Three undisturbed peatland ecosystems adjacent to the former well pads served as reference
sites. A total of nine designated study areas included five restored areas, three reference areas,

and one unrestored control area.

Peace River well pad research areas

The former in situ well pad in the Peace River Oil Sands is situated in the dry mixedwood
ecoregion. The ecoregion is characterized by daily temperatures of 13 °C and an average 112
days frost-free period between May and September. 70% of the approximately 390 mm
annual precipitation fall during the average 112 days frost-free period between May and
September (Table 3.1; Government of Canada 2019).
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Table 3.1 Climate data for all three years of the study with special focus on the five-month-long vegetation
season between May to September (CRIM 2021).

Climate data Study region Study year
2017 2018 2019
Mean min. temperature May-Sep (°C) Cold Lake 9 8 8
Peace River 7 6 6
Mean max. temperature May-Sep (°C) Cold Lake 21 20 19
Peace River 21 20 19
Cumulative precipitation May-Sep (mm) Cold Lake 300 347 284
Peace River 194 209 256
Cumulative precipitation total year (mm) Cold Lake 495 501 403

Peace River 321 313 334

Restoration done at the Peace River well pad consisted of the partial removal of the well
pad’s mineral fill, where the surface mineral soil layer was scraped down to 15 cm above the
average water table level (restoration area PR15; Figure 3.1A), and to 5 cm above the
average water table (restoration area PRS; Figure 3.1B). Both restoration areas were subject
to vegetation reintroduction by planting of Carex aquatilis Wahlenberg, Larix laricina (Du
Roi) K. Koch and Salix lutea Nuttall. An undisturbed wooded bog (BOG; Figure 3.1C),
adjacent to the restoration areas, served as a reference area. Detailed description of the

restoration treatments and on the selection of the study sites and research areas can be found

in Vitt and colleagues (2011) and Lemmer and colleagues (2020), respectively.

Figure 3.1 Study areas at the former Peace River in situ oil sands well pad A) PR15: Partial removal of mineral
soil (MS) to 15 cm above seasonal water table; B) PR5: Partial removal of MS to 4 to 6 cm above seasonal
water table; C) BOG: Treed bog with characteristic hummocks (dry microsite) and hollows (wet microsite).
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Cold Lake well pad research areas

The Cold Lake Oil Sands are part of the moist mixedwood ecoregion, with typically average
daily temperatures of about 14 °C during a 116 days frost-free period, and an average

precipitation rate of 421 mm per year (Table 3.1; Government of Canada 2019).

Restoration techniques tested at the Cold Lake well pad consisted, besides the partial removal
of the mineral fill, also of the complete removal of all introduced well pad construction
materials. The partial removal that was applied, levelled the surface of the former well pad
to the water table (mineral fill scraped down to 0 cm). Different microforms developed in the
partial removal area (restoration area PRO), where the soil surface is either above the average
water table (dry microform PRO-D; Figure 3.2B), or below the average water table (wet
microform PRO-W; Figure 3.2C). Another restoration area, where partial removal to 0 cm
was applied but no microforms developed, remained very even at the water table (restoration
area PROE; Figure 3.2D). The restoration area where the former well pad’s mineral fill and
the underlying geotextile were completely removed (CR) is characterized by a shallow open
water area with a water table level of more than 80 cm above surface (restoration area CR-
W; Figure 3.2F) in which a brown moss carpet (CR-D; Figure 3.2E) floated. All the
restoration areas at the Cold Lake well pad study site have been left for spontaneous
revegetation by natural ingress from nearby diaspore sources. As a control, an unrestored but
spontaneously revegetated area on the former well pad (unrestored control area UNR; Figure
3.2A) was used. A treed rich fen (TRF; Figure 3.2H) and a shrubby rich fen (SRF; Figure
3.2G) adjacent to the restored wetlands serve as two additional reference study sites. Detailed

descriptions of the research areas can be found in Lemmer and colleagues (2020).
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Figure 3.2 Study areas at the former Cold Lake in situ oil sands well pad: A) UNR: Unrestored; B) PRO-D: Partial
removal of mineral soil (MS) to surface elevation of surrounding fen reference ecosystem, dry microform; C)
PRO-W: Partial removal of MS to surface elevation of surrounding fen reference ecosystem, wet microform; D)
PROE: Partial removal of MS to same surface elevation of surrounding fen reference ecosystem, even ground
relief without microform; E) CR-D: Complete removal of MS with a floating moss carpet as dry microform; F) CR-
W: Complete removal of MS with shallow open water as wet microform; G) SRF: Shrubby extreme-rich fen
(REF); H) TRF, a treed rich fen (REF). Both REF had characteristic hummocks (dry microsite) and hollows (wet
microsite).
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3.4.2 Sampling design

Sampling of the restoration approaches applied in each study area included net primary
productivity (NPP), the decay rate &, and environmental parameters during two study seasons.
NPP included the above-ground (AG) and below-ground (BG) organic matter produced. Both
above-ground and below-ground biomass were collected at three sample spots in each of the
study areas (n=39) at the peak of two corresponding vegetation periods. Decomposition was
measured over a period of two years for vascular plants (n=260) and bryophytes (n=260)
separately in each study area. Data on environmental parameters were measured for related
studies at three study plots in each microform of the study areas, except in PR5 and PR15,

where six study plots had been installed (n=45; Lemmer et al. 2020; Chapter 1).

3.4.3 Environmental parameters

Environmental constraints on plant productivity are water table level (WTL), temperature,
and biochemistry (Brinson et al. 1981; Jackson et al. 2017; Mikiranta et al. 2018). We
measured WTL in respect to the surface (including the groundlayer vegetation, such as
bryophyte cover) and soil temperature at 5 cm depth (ST5) biweekly for related research at
three study plots in each microform of the study areas during the vegetation period of 2017

and 2018 (Lemmer et al. 2020).

3.4.4 Biomass and productivity

An ecosystem’s productivity can be measured as a rate of biomass production during a

specific period.

Above-ground biomass

To assess above-ground biomass, the aerial live portion of plant biomass was collected at
peak standing crop in August 2017 and at the end of September 2019. Three 50 x 50 cm
sample frames were randomly placed in the study areas and with respect to present
microforms (dry/wet; n=39). In each sample frame, all living plant biomass that had been
produced in the respective vegetation season, was cut at the shoot/root transition zone just
above the surface of the vegetation covering the ground, such as bryophytes. The ground

layer of bryophytes and lichens was considered acrotelmic above-ground living plant canopy
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(Vitt 2007) and was therefore included in the above-ground biomass. We were careful not to

include any root biomass. No large trees were present in the unrestored or restored areas.

Samples were cleaned of all organic litter (necromass). If the biomass expressed a
decomposition state of more than 75% it was considered necromass and excluded from the
biomass used for productivity calculation of that year. All biomass was sorted into
corresponding life forms (shrubs, ericaceous, herbs, sedges, brown mosses, peat mosses,
lichens). Tree species such as Picea mariana (Miller) Britton, Stern & Poggenburgh and
L. laricina (Du Roi) K. Koch that had only grown to shrub size since restoration were treated
as shrubs and added to the respective sample. Considering perennial plant species (woody
shrubs and trees), we carefully selected only the plant tissue which had been produced during
the respective growing season and excluded plant tissue from previous years. Samples were

then dried at 70 °C to constant weight (g/m?).

Below-ground biomass

Below-ground root growth was measured with root ingrowth bags (Finér & Laine 2000). In
each microsite (dry and wet) of all restored and reference wetlands, three replicate cylindrical
cores were extracted from peat (10 x 30 cm) or of mineral soil (5 x 20 cm) in the respective
study areas in August 2017 (n=48). The cores were cleaned of all living and senescent plant
litter and roots and filled into respectively sized root ingrowth bags made of 1 mm fibreglass
mesh material. The bags were individually labelled and closed with fishing line. Ingrowth
bags were stored frozen until reinsertion in their corresponding sample spots at the end of
October 2017 at the Cold Lake study site and in beginning of November 2017 at the Peace

River study site.

Ingrowth bags were retrieved after an incubation period of 692 days at the Peace River study
site and 700 days at the Cold Lake study site. Before retrieving the bags, we made sure to cut
all roots growing in or out of the bag, to not disturb the total root biomass collected. A total
of 40 bags were retrieved. In five instances, ingrowth bags had been lost or damaged, while
in CR-W all the incubated ingrowth bags were categorically destroyed by wildlife. The total
of eight bags were lost, which accounts for a loss of 17%. Peat cores were kept frozen until

analysis in the lab. Analysis consisted of careful manual cleaning the bags from any
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necromass and live aerial plant organic matter, other than roots. In order to retrieve principal
and fine roots without problems, mineral soil cores were washed in a water bath and roots
were manually extracted after sedimentation allowed a clear view. The loose peat structure
was much less dense than mineral soil cores and allowed for careful manual extraction of the
roots under a binocular. The extracted roots were then dried for at least 48 hours at 70 °C

until constant weight.

3.4.5 Decomposition

To measure above-ground decomposition, we applied the litter bag technique (Falconer et al.
1933; Lunt 1933; Bocock & Gilbert 1957), which simulates the decay of above-ground
organic plant matter after mortality. The technique measures the remaining mass of a certain
aerial plant biomass after a given period of time. Since the focus of this study was the
decomposition of a representative plant community in the restored areas, and not of a specific
plant species, we used mixed above-ground biomass to fill the litter bags (Ward et al. 2010).
Vascular plants and bryophytes were incubated separately in different bags.

Live organic plant matter was collected during August 2017. The biomass collection was
done in each microform of the study areas in three randomly placed 50 x 50 cm quadrats. All
species collected in each microform are shown in (Appendix 3.1). The live biomass was
cleaned of litter, cut, mixed, and dried at 40 °C until constant weight. Litter bags for vascular
plants, sized 10 x 10 cm, were made of 1 mm fibreglass mesh material (Appendix 3.2). Litter
bags for bryophytes were made of 1 mm nylon mesh material and sized 6 x 6 cm (Appendix
3.2). The bags were filled with 1-1.5 g dried mixed litter, tagged, and closed with fishing
line. To avoid ongoing decomposition, all prepared litter bags were kept frozen until
incubation on 30 October 2017 in the Cold Lake study areas, and 2 November 2017 in the

Peace River study areas.

To meet adequate repetition (Berg 2014), we prepared 20 litter bags of each vegetation group
for each microform of the study areas. Exceptions were made for PR15 and PR5, where no
living mosses were found and accordingly no bryophyte litter bags were laid out in these
study areas. Thus, a total of 280 vascular litter bags and 240 bryophyte litter bags were

incubated. All litter bags were rewetted with surface available water before incubation. To
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mimic the natural senescence process of vascular litter at the surface, we followed Strakova
et al. (2012) and placed vascular litter bags horizontally on top of the surface. A natural
senescence of bryophytes was assumed to start belowground, following Graf (2008).
Consequently, bryophyte litter bags were buried horizontally at 5 cm depth. Litter bags were
retrieved after an incubation period of 692 days at the Peace River study site, and after 701
days at the Cold Lake study site. From an originally buried total of 520 litter bags, we were
able to retrieve 382 litter bags; 27% of the bags were lost or had been damaged by wildlife.
Bags were carefully cleaned of any ingrowing living vegetation (Appendix 3.3). The

remaining biomass was dried for a minimum of 48 hours at 70 °C until constant weight.

3.4.6 Data analysis

The statistical analysis was done using R version 3.6.0 (R Core Team 2019). All figures were

generated with the package ‘ggplot2’ (Wickham et al. 2020).

Productivity

Productivity P (g m yr'!) was calculated as the plant organic matter (g) produced per unit
area (m?) over a one-year period (yr). To evaluate an effect of ST5 and WTL on the above-
ground and below-ground biomass production and rates of productivity among study areas,
we used one-way analysis of variance (ANOVA) with multiple variables and a post-hoc
Tukey’s HSD pairwise comparison. The level of significance was accepted at p<0.05.
Logarithmic transformation was applied to obtain normality. To confirm the ANOVA
result’s consistency despite the non-normal distribution of the data, a non-parametric
Kruskal-Wallis test was performed. Linear regressions were then performed to investigate
the effect of the environmental parameters WTL and ST5 on above-ground and below-

ground biomass, using the ‘Im’ function for linear models with a confidence level of 95%.

Decomposition

Biomass loss is expressed with the decay rate constant &, which is usually a negative value
since the decomposition continues to decrease the remaining mass (Berg 2014). The single
exponential decay rate constant k (yr'') was calculated as in Eq. 4 (Jenny et al. 1949; Olson
1963; Brinson et al. 1981; Wieder & Lang 1982; Berg 2014), where My and M, represent

the remaining and original mass respectively, during a specific time # (in years):
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—k = e/o) [Eq. 4]
Furthermore, we calculated the percent mass remaining (MR) in a single exponential model

as in Eq. 5 (Wieder & Lang 1982; Szumigalski & Bayley 1996; Thormann & Bayley 1997b):

MR = 100 — 22 x 100. [Eq. 5]

o

Weight gain instead of loss has been observed in 13 decomposition bags after the two-year
incubation period and omitted before statistical analysis to avoid data error. Non-normal data
were transformed logarithmically. To explore the effect of ST5 and WTL on the
decomposition, we conducted a one-way ANOVA with multiple variables and a 95%
confidence interval. The results of the ANOVA were confirmed with a non-parametric
Kruskal-Wallis test. Linear regressions were used to visualize the effect of the environmental

parameters WTL and STS5 the decay rate &, using the linear models function ‘Im’.

Peat accumulation potential

The rate of potential peat accumulation (g/m?) in each study area was calculated in two
different ways: First we calculated the quotient of the annual total biomass production (g m’
2 yr'!) and the total mass loss (g m™ yr'!) according to Thormann and colleagues (1999), then
secondly we calculated the asymptotic peat accumulation limit (pa/a.a in g/m?) according to
the acrotelm model by Clymo (1984), considering organic matter production (g m? yr!) and
decay rate k (yr'). Results from previously reported measurements of net ecosystem
exchange and respective C storage or release in the same study areas were used for

comparisons (Lemmer et al. 2020).
3.5 Results

3.5.1 Biomass and productivity

Highest mean sum of above-ground (AG) and below-ground (BG) biomass productivity in
the restored areas was observed in PROE (627 g m? yr'!) and PROD (516 g m? yr'!; Table 3.2).
This is similar to the total biomass production seen in the dry microform of the undisturbed
shrubby rich fen (SRF-D: 542 g m?yr'!; Table 3.2), where the highest productivity of the

reference areas was observed. Soil temperature at 5 cm depth (ST5) was found a significant
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driver (positive relation) on the above-ground biomass productivity (F3 204=4.93, p<0.01, adj.
’=0.04; Appendix 3.4A). Some study areas, especially PR5, PROE, CR-D, showed
substantial differences in the total above-ground biomass productivity for the two individual
years of collection, 2017 and 2019 (Figure 3.3). At the same time, slight changes in the
weather have been observed, where mean minimum and maximum temperatures were
observed 1 to 2 °C colder in 2019, but precipitation remained comparable during both years
(Table 3.1). Study areas that had less biomass production in 2019 versus 2017 had a dominant
bryophyte cover, while study areas with more biomass production in 2019 as compared to
2017 were dominated by herbaceous and graminoid vegetation with little or no bryophyte
cover (Chapter 1). Furthermore, large differences occur in the biomass production which are
related to spatial variability within each study area, especially within the restored areas, due

to selection of different measurement plots in each study year.

F“zrzaﬂ:'l._fﬂ. p= 0.05, aﬁj, r~°=0.03

Biomass

B AG 2017
B AG 2019

NPP {g |'|'|_2 '!"T_II}

UNR
PR15
PR5
FPROD
PROW
PROE
CR_D
BOG_W

o
3

SRF_D
SRF_W
WRF_D
WRF_W

Figure 3.3 Differences between the two study seasons of mean above-ground (AG) biomass collected in each
microsite (D=dry; W=wet; E=even) of all study areas (UNR=unrestored; PR15=partial removal (PR) to 15 cm
above the average water table level (WTL); PR5=PR to 5 cm above the WTL; PRO=PR to (0 cm) the WTL with
microforms D=dry/W=wet/E=even without microforms; CR=complete removal D=dry/floating moss carpet;
SRF=shrubby rich fen with microform D=dry/W=wet, TRF=treed rich fen with microform D=dry/W=wet;
BOG=wooded bog with microform D=dry/W=wet).
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Of the plant functional types, herbs and sedges were observed to contribute the most to the
organic mass production in the study areas (Figure 3.4). This was confirmed through the
highest overall NPP rates estimated in PROD, PROE, SRF-D, which were all dominated by
fen characteristic plant species. In previous studies, the vegetation composition in the same
study areas has been observed to be characterized especially by a high cover percentage of
herbs like Equisetum sp. L. and Menyanthes trifoliata L., and sedges like Carex aquatilis
Wahlenberg, C. diandra Schrank, and Eleocharis palustris (Linnaeus) Roemer & Schultes
(Chapter 1).

Plant functional type
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Figure 3.4 Contribution to the total biomass sorted by plant functional type (above-ground biomass) and roots
(below-ground biomass) over a two-year study period. Characteristic plant groups of the respective plant
functional types were specifically noted, such as ericaceous shrubs (shrubs), sedges (herbs), Sphagnum sp.
(mosses). Codes for study areas as in Figure 3.3.
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The same study areas (PROE, SRF-D, PRS) with the highest above-ground productivity in
their respective group (restored/reference) exhibited the highest root production below-
ground (Figure 3.4 & Figure 3.5). The root productivity in restored areas was approximately
51% of the total biomass production, while in REF roots made up only about 23% of the total
biomass produced (Figure 3.5). ST5 was found a significant driver on the below-ground
biomass production (F336=4.04, p=0.01, adj. r>=0.19; Appendix 3.4A), where a positive
relation was observed between temperature and biomass production. Although WTL is not a
significant driver explaining below-ground biomass production, we noted the lowest root
productivity among the restored peatlands in the inundated study areas PROW (38 g m? yr'!)
and CR-D (37434 g m? yr'!") and likewise in the wet microforms of the reference wetlands

SRF-W (80+74 g m? yr'!), TRF-W (4+3 g m* yr'!), BOG-W (24+24 g m? yr'!).
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Figure 3.5 Mean organic plant matter produced above-ground (AG: Fi2265=1.78, p=0.05, adj. r2=0.03) and
below-ground (BG: F1227=2.27, p=0.04, adj. r?=0.28) in the study areas during a two-year study period. Groups
with the same letters are not significantly different. Study area codes as in Figure 3.3.

3.5.2 Decomposition

After about two years of incubation, the remaining biomass of bryophytes was in general

higher than the remaining mass of vascular plants (

146



Figure 3.6). At the same time, less organic matter remained in restored areas than in REF. A
decay gradient became visible among the microforms, where larger k-values were observed
in the wet microforms. In restored areas, the decay rate (k) of vascular plants ranges from -
1.26/yr in CR-D to -0.48/yr in PR15, compared to the slower decay rate of bryophytes
ranging from -0.14/yr in PROE to -0.26/yr in PROD (Table 3.2). For comparison, k-values in
REF ranged from as low as -0.04/yr for bryophyte organic matter decomposition in the wet
microforms of the treed rich fen (TRF-D) and the treed bog (BOG-D), to -0.93/yr for vascular
plant decomposition in the wet microform of the shrubby rich fen (SRF-W). ST5 was found
to significantly affect the decay rate k (F1364=18.6, p<0.01, adj. r’<0.01; Appendix 3.5A).

The higher the soil temperature, the higher was the decomposition rate.
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Figure 3.6 Remaining mass (in %) of bryophyte and vascular plant litter in each microsite of the restoration
treatments, the unrestored and reference peatlands, after a two-year incubation period. No bryophytes were
present at PR15 and PR5 in the begin of the study and thus not incubated in those locations. Study area codes
as in Figure 3.3.
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3.5.3 Peat accumulation potential

The peat accumulation potential according to the production-decomposition-quotient (PDQ)
is on average 1.9, indicating plant organic mass production exceeds biomass decay. The
asymptotic limit p./a. in restored peatlands is not always congruent with the PDQ. The
lowest peat accumulation potential was observed in PROW (PDQ 1, ps/oa 66 g/m?) and the
highest in PROD (PDQ 2.2, pa/ota 500 g/m?) and in CR-D (PDQ 1.8, pa/ata 1 421 g/m?; Table
3.3). In contrast, the mean peat accumulation in reference peatlands (REF) is PDQ 5.5, with
the lowest quotient estimated for the wet microform of the shrubby rich fen (SRF-W, 1.5,
pa/0a 374 g/m?) and the highest quotient estimated for the dry microform of the ombrotrophic
(BOG-D, 11.4, pa/aa 9 598 g/m?). Restored peatlands with a peat accumulation potential
larger than 2 were observed to have a considerable cover of shrubs (Chapter 1), in particular
PROD (PDQ 2.2 and pa/aia 682 g/m?) and PR15 (PDQ 2.1 and pa/oa g/m?). Restored peatlands
without shrubby vegetation but likewise high peat accumulation potential larger than 1.5
were defined by a dominant bryophyte cover like CR-D and PROE (PDQ 1.9 and pJ/aa
468 g/m?).

The variation in the peat accumulation potential observed in this study did not always align
with measurements of growing season C exchange observed at the same study areas. The
cumulative total carbon (C) balance for a two-year study period, as seen in Chapter 2
(Lemmer et al. 2020), identifies PROD as the largest C sink among the restored areas (-
310 g C m?), followed by CR-D (-205 g C m?), PR5 (average of -139 g C m?) and PROE (-
32 g C m?; Table 2.8). Negative values indicate C uptake by the ecozone, positive values
indicate C release to the atmosphere. Despite the effective C storing shrub vegetation, PR15
developed as a C source (on average 45.5 g C m?). In two restored peatlands with inundated
conditions, we observed simultaneously the highest C emissions (421 g C m? in PROW and
546 g Cm? in CR-W; Table 2.8) and the lowest peat accumulation potential (peat
accumulation potential quotient 1 in PROW and 1.5 in CR-W; Table 3.3).

3.6 Discussion

The aim of this study was to assess peat accumulation potential, via the net primary

productivity and decomposition, of restored peatlands following in sifu oil extraction
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disturbances. In particular, we considered if the mineral fill removal technique and the
method of revegetation was of importance to return the peat accumulation function to the
restored peatlands. Results show higher peat accumulation and C sequestration potential in
restored areas that are defined by cooler soil conditions, as observed in restored peatlands
with a water table level (WTL) at the surface. Such conditions were found in the restored
peatlands that were treated with a partial removal of the mineral fill to near the WTL. The
complete removal resulted in a shallow open water area with mostly floating aquatic
vegetation where Typha latifolia L.-dominated communities developed in the margins of the
shallow open water area (CR-W). Results generated for the floating moss carpet (CR-D) are
not representative for the whole restored area but add interesting data on floating peatland
bryophyte lawns. Many incubated samples were lost in the shallow open water area (CR-W)
and data for this area could not be generated and integrated in analysis. However, the marsh-
like conditions allow for comparison with other studies. The active revegetation via the
planting of peatland vegetation did not prove to be necessary to return a peat accumulation
and carbon sequestration function to restored peatlands. On the other hand, the introduction

of shrubs can accelerate the C uptake and positively contribute to peat accumulation.

Even though we observed net primary productivity (NPP) and decomposition significantly
affected only by soil temperature at 5 cm depth (ST5) and not by WTL, ST5 and WTL are
known to be interdependent environmental factors in peatland ecosystems (Nichols 1998). A
high WTL in peatlands is responsible for steady, cool temperatures, while a WTL drawdown
is known to result in warmer soils (Weiss et al. 2006). Other research shows that with soil
warming, root production increases, in particular for shrubby species (Mékiranta et al. 2018;
Malhotra et al. 2020). The same effect has been observed in our study, where higher mean
root production of 143 g m? yr! of understory plant functional types was noted in the
restored peatland’s residual mineral soil, compared to the same plant functional type’s mean
root production of 88 g m? yr'! in peat of REF. The contribution of decomposing roots to
peat accumulation has not been considered in this study, which was observed to have
significant contribution to peat accumulation below the ground (Scheffer & Aerts 2000; Graf

& Rochefort 2009).
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Conversely, a significant positive effect of WTL drawdown on root NPP has been observed
in previous studies (Murphy & Moore 2010; Malhotra et al. 2020), which we could not find
in our study. This study however is limited in the interpretation of the effect of environmental
factors on NPP, since WTL and ST5 have been measured throughout the vegetation periods
of 2017 and 2018, while the biomass was collected in 2017 and 2019 only. Although the
weather conditions of 2018 and 2019 growing seasons are comparable in terms of
temperature and precipitation, the results might yet be skewed. However, we noted a trend
of lower below-ground biomass productivity within the wet microforms of REF (SRF-W,
TRF-W, BOG-W), compared to the dry microforms, and likewise in the extremely wet,
inundated restored microforms (PROW and CR-D). Our findings support the fact that
biomass production decreases with water table levels high above the surface, as the highest
below-ground productivity was observed in the restored peatlands with a steady the WTL at
the surface, as seen in PROE and in PR5. The same restored peatlands, where partial removal
of the former in situ oil sands well pad was done, supported highest cover of herbaceous
communities (Chapter 1), in particular sedge vegetation communities dominated by
C. aquatilis Wahlenberg and T. latifolia L., as was observed in other studies (Finér & Laine

2000; Weltzin et al. 2000).

A shortcoming of this study in this context is the neglected tree biomass productivity in the
REF for completeness. Eight to 10 years post restoration, large trees have yet to develop in
the restored peatlands, and the few growing tree species (L. laricina (Du Roi) K. Koch and
Picea mariana (Miller) Britton, Sterns & Poggenburgh) that had grown to shrub-size were
integrated with the shrub layer. Values provided in this study for tree biomass productivity
in the respective REF (the treed rich fen “TRF” and the treed bog “BOG”) therefore need to
be considered with caution and are compared to other published literature. Campbell and
colleagues (2000) and Vitt and colleagues (2001) provide values for general tree NPP
observed in continental treed fens (44 g m? yr'!') and continental treed bogs (27 to 106 g m°
2yr!). Above-ground NPP in particular for P. mariana (Miller) Britton, Sterns &
Poggenburgh ranges from 27 to 310 g m? yr'! in continental non-permafrost bogs (Grigal et
al. 1985; Thormann 1995), and 6 g m2 yr'! in a continental moderate rich fen (Szumigalski
1995). Above-ground NPP in particular for L. /laricina (Du Roi) K. Koch was noted at 38 g m

2yrlin a continental moderate rich fen (Szumigalski & Bayley 1997). These values may
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provide an indication of the ecological distance between restored and reference areas, until
the restored areas have transformed in the targeted fen ecosystem with fully developed
vegetation. At this moment, the comparison of the restored areas to the reference areas

excluding the tree biomass but including all shrub-sized tree and shrub species should suffice.

In our study, we observe generally high mass loss in all study areas, without WTL drawdown.
Decomposition rates with an annual mass loss of up to 40%, have been observed to increase
due to WTL drawdown enhancing soil temperature, aeration, and enzyme activities due to a
shift from nitrogen (N) and phosphorus (P) acquisition to C uptake (Strakova et al. 2011;
Dieleman et al. 2016). In our study, in the undisturbed REF, mass loss ranged from an average
18% for bryophyte biomass to 56% for vascular plant matter. In contrast, in the restored
peatlands, we found an average mass loss of 73% for vascular plants and more than 30% for
bryophytes. Highest mass loss of 88% of vascular plant matter was found in the restored CR-
D where the former well pad was completely removed, and a floating moss carpet developed.
Great variation of short-term decomposition rates among sites during the first 100 days of
decomposition have been observed (Thormann & Bayley 1997b), but the same study shows
that long-term decomposition rates over 456 days are rather constant, which gives us

confidence for our results reported for a two-year decomposition period.

Easily decomposable vascular plant litter was perceived to support higher enzyme activities,
in contrast to recalcitrant bryophyte, especially Sphagnum spp. L., litter which is considered
to contribute significantly to peat accumulation (Turetsky et al. 2000; Vitt et al. 2001;
Strakova et al. 2020). De Long and colleagues (2016) found mosses to drive decomposition,
especially beneath the moss layer where the hydrological regime and moisture retention offer
perfect conditions for decomposers. Litter which decomposes on top of the moss layer was
found to dry faster and inhibit decomposition (De Long et al. 2016). Although we incubated
the decomposition bags at the surface, imitating decaying above-ground biomass that falls to
the ground (Strakova et al. 2012), we observed the same trend in the moss dominated restored
peatlands CR-D and PROE, noting the highest decay coefficients k of -1.26 yr'! and -0.72 yr-

! with a mass loss of 88% and 74%, respectively.
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The phenomenon of some decomposition bags gaining weight instead of losing mass has
been observed in other studies, which assumed C and N depositions as a result of growing
microflora in decomposing plant tissue, as well as increased presence of decomposers to be
the reason for the weight gain (Thormann & Bayley 1997b; De Long et al. 2016). It is known
that decomposition continues throughout all layers of the peat profile, although at different
rates. Above-ground plant organic matter naturally begins the decomposition cycle at the
surface of the peatland and over time, will continue its way into deeper layers of the peat

body.

There is little research on decomposition rates in rewetted residual mineral fill. Further
studies comparing the decomposition rates at different depths and under different surface
vegetation in restored peatlands following in situ well pad disturbances could help to gain

more insight in the peat accumulation dynamics of these early successional peatlands.

3.7 Conclusion

This study indicates that peatland restoration on residual mineral fill of in situ oil sands well
pads is on the trajectory to return peat accumulation and carbon sequestration functions
comparable to reference peatlands (REF). In fact, in this study, the partial removal of the
mineral fill has been more effective for supporting peat accumulation and carbon
sequestration than the complete removal of the entire well pad construction materials. Decay
coefficients were generally higher in restored peatlands than in REF. Because the peat
accumulation depends to a large part on the dominant plant species composition, we observe
the importance of restoration work to provide suitable hydrological conditions for the
development of peatland characteristic plant species, especially bryophytes. More research
and especially the implementation of large-scale studies (i.e., operational well pad scale)
about peatland restoration following the partial and complete removal of in sifu well pad is
needed to increase the success and efficiency of the peatland restoration work done in the oil

sands regions.
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Appendix 3.2 Litter bags made of 1 mm fiberglass mesh material for vascular plants (left) and 1 mm nylon
material for bryophytes (right) before filling.
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Appendix 3.3 The litter biomass material in a retrieved bryophyte litter bag became the new base for living
biomass on top, demonstrating the need for the retrieved bag to be cleaned before further analysis of the
remaining mass inside the bag. Weight gain is possible due to plant ingrowth,
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Appendix 3.4 Linear regressions visualizing A) the effect of soil temperature at 5 cm depth (ST5) on logarithmic
transformed above-ground biomass (AG: Fi206=12.7, p<0.01, adj. r>=0.04) and below-ground biomass (BG:
F138=12.75, p<0.01, adj. r>=0.23), as well as B) the effect of water table level relative to the surface (WTL) on
above-ground and below-ground biomass (AG: F120<0.01, p=0.96, adj. r’<0; BG: F13s=2.28, p=0.14, ad.
r2=0.03).
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Appendix 3.5 Linear regression visualizing the effects of A) soil temperature at 5 cm depth (ST5) (F1,364=18.6,
p<0.01, adj. r’<0.01), and of B) water table level (WTL) relative to the surface (Fs34=0.81, p=0.37, adj. r’<0) on
the decay rate k.
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Appendix 3.6 Mean water table level (WTL) and soil temperature at 5 cm depth (ST5) for 2017 and 2018, as
measured in 2018 for related research (Lemmer et al. 2020; Chapter 1).

Study area STS WTL
2017 2018 2017 2018
UNR 18+5 2043 -29+16 -28+£13
PR15 16+3 2048 -36+18 -13+8
PRS5 163 19+5 -23+£19 2«5
PRO-D 173 20+5 9+5 9+ 4
PRO-W 15+3 2246 29«5 20+ 8
PRO-E 175 18+£5 -1+5 3+4
CR-D 165 18+5 0+4 3+5
SRF 176 14+4 14£12 14+5
SRF 14+3 14+4 13+9 13+5
TRF 163 1246  -1+8 =547
TRF 15+3 1245 11+7 11+8
BOG 14+4 187 -36+8  -17+5
BOG 12+4 16+14 -18+9 -1+4
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Conclusion

This research is among the first to evaluate novel peatland restoration approaches following
the in situ oil sands well pads disturbances in the Oil Sands regions of northern Alberta. The
assessed peatland restoration had been done in the early 2000’s and included the partial or
complete removal of the decommissioned well pad’s mineral soil. Since already thousands
of inactive and abandoned in sifu well pads are located in the fragmented boreal forest and
thousands more will be constructed for ongoing bitumen extraction in the upcoming years,
an increasing number of valuable Carbon storing peatlands will be disturbed. In this context,
restoration is crucial to return necessary ecosystem functions, such as the ongoing peat
accumulation and Carbon sequestration. The comprehensive results of this research will be
discussed in the following sections. The principles of ecological restoration have been
applied using different methods for peatland restoration to favor the recovery of disturbed

peatlands towards their former ecosystem functions (Figure 0.9).

“ Undisturbed wetland ooy
Organic wetland

Mineral wetland

Shallow
open
waolef

ogical distance

Time

Figure 0.9 Concept of ecological peatland restoration, including focal points to be considered during an
ecological pre-assessment and implemented in the following restoration management plan.

Chapter 1 compared the vegetation communities that developed in the restored peatlands.

We observed the development of marsh-like vegetation in the shallow open water area that
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formed in the depression created due to compressed underlying peat following the complete
removal of an in situ well pad. In contrast, we found emerging dominant fen characteristic
species and vegetation communities in the near-surface rewetted areas where partial removal

of the mineral material allowed the reestablishment of peatland-like hydrology.

In chapter 2 we evaluated the net ecosystem exchange, methane emissions, and global
warming potential of the restored peatlands. Our study shows greenhouse gas emissions,
especially methane (CH4) emissions, are enhanced in the shallow open water area following
the complete removal restoration technique. In the areas treated with the partial removal of
the mineral fill that have a near-surface water table, carbon uptake from the atmosphere is

comparable to reference peatlands.

In chapter 3 we assessed the peat accumulation potential via net primary productivity and
decay of vascular and bryophyte litter. High peat accumulation potential was observed for a
bryophyte carpet floating in the shallow open water area prompted by the complete removal
technique and in the partial removal areas scraped down to the water table level revegetated

with peatland characteristic plants, especially bryophytes and shrubs.

The extensive restoration via the complete removal of the disturbance was compared to the
restricted method via the partial removal of an in situ well pad in combination with active
and passive revegetation methods. In our study, the complete removal of a former well pad
resulted in the development of a shallow open water area, with mostly floating aquatic
vegetation and marginal marsh-like vegetation. However, marshes are known to remain
mineral wetlands for a long time and accumulate peat only very slowly if at all (Rydin &
Jeglum 2013; Mitsch & Gosselink 2015). In this case, the succession towards a peatland
ecosystem within a relatively short time frame is not certain and the ecological restoration is
not as effective as can be. In contrast, our study shows that the partial removal technique is
effective for returning peatland characteristic vegetation, which is the base for carbon uptake
and storage in the biomass that is accumulating and slowly decomposing to peat. The partial
removal of the former well pad was the more successful the closer the mineral fill was scraped
down and adjusted to the surface and the respective water table level of the adjacent

undisturbed peatland ecosystem. The hydrological connection was observed to impact the
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soil temperature, while both environmental factors are known drivers of greenhouse gas

emissions and vegetation development (Lloyd & Taylor 1994; Bubier et al. 2003).

In terms of peatland characteristic vegetation, we observed spontaneously developed
vegetation composition to be more abundant and richer in peatland species, compared to the
actively revegetated community composition. According to studies on natural species
dispersal (Palmer et al. 1997; Campbell et al. 2003), we conclude that the active revegetation
via planting of peatland characteristic sedges (Carex aquatilis Wahlenberg), shrubs (Salix
lutea Nuttall) and trees (Larix laricina (Du Roi) K. Koch) is not necessary to return peatland
characteristic vegetation, if the area to be restored is small in size (<1 ha) and species rich
diaspore sources comparable to the target peatland ecosystem are nearby to allow for natural
ingress. In particular, trees have been found to have difficulties developing in restored
peatlands post oil and gas disturbances (Shunina 2015; Saraswati et al. 2020; Bork et al.
2021). In case of the restoration of treed peatlands, the planting of typical tree species may
accelerate their development and the overall restoration success (Caners & Lieffers 2014;
Dohong et al. 2018; Murray et al. 2021). An ecological assessment of the peatland prior
disturbance will confirm whether the active tree species introduction should be included in

the restoration management plan.

Our results about the inefficiency of the complete removal restoration techniques to return
peatland characteristic vegetation and functions are in contrast to the study by Xu and
colleagues (2021), who had a positive feedback of a complete removal restoration trial at a
small scale. Among other tested restoration approaches, the complete removal did not
develop a shallow open water area, and therefore, in combination with the applied moss layer
transfer technique (Quinty & Rochefort 2003), presented an adequate technique to restore
peatlands and characteristic Sphagnum-dominated vegetation following in situ oil sands well
pad disturbances (Xu et al. 2021). A major difference of the two studies is the adjacent or
surrounding type of peatland ecosystem and its respective hydrology. Xu and colleagues
(2021) work was done within a treed bog complex, where the water table is normally below
the surface and the peat substrate is expected to be less degraded and more robust allowing
for active decompression and fluffing up to reinstate vertical and horizontal hydrological

connectivity. Our study of the complete removal techniques took place in a rich fen
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ecosystem, which is characterized by a water table at or above the surface and a more strongly
decomposed peat substrate. Once established, a shallow open water area is not certain to take
the successional route to a peatland ecosystem (Volik et al. 2018; Ketcheson et al. 2016;

Kreyling et al. 2021).

On the other hand, the research areas for this study treated with the partial removal of the
mineral fill were located within a rich fen complex (PR0) and within a bog (PR15 and PRSY)
but showed very different vegetation development. The difference of revegetation success
between the study of Xu and colleagues (2021) and our study also lies within the revegetation
techniques applied. While in our study, three vascular fen species were actively and
selectively introduced, while in contrast, the MLTT applied in the study of Xu et al. (2021)
comprehensively transfers a wide variety of the upper ecological crust of an undisturbed
reference peatland, including seeds and rhizomes of vascular plants, spores of bryophytes

and lichens, enzymes, microbes, virus, and bacteria (Hugron et al. 2020).

Despite active introduction of three fen species (C. aquatilis Wahlenberg, L. laricina (Du
Roi) K. Koch and S. lutea Nuttall; PR15 and PRS), the restored peatlands developed less
diverse and less rich species communities being surrounded by a bog, compared to the
peatland species rich vegetation communities in the restored peatlands located in within the
rich fen complex (PRO). However, to support natural species dispersal and ingress, we
believe the proximity of a suitable natural diaspore source for the targeted restored peatland
ecosystem to be of utmost importance. We found the proximity to the water table level the
most important factor contributing to effective peatland restoration and stress the importance
of meticulous levelling of the residual mineral fill’s surface. We again stress the importance
for comprehensive ecological assessments of the individual peatlands prior to disturbance in
order to develop suitable management plans and a greater success rate of ecological peatland
restoration. We conclude, following the decision tree in (Figure 0.10), the ecological pre-
assessment dictates whether to choose a complete or partial mineral fill removal of a former
in situ well pad. The restoration target should reflect the initially disturbed peatland type,

which is characterized by the hydrological conditions and it4s vegetation composition.
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Figure 0.10 Decision tree for practitioners to decide on ecological restoration techniques, regarding methods for
mineral fill removal and revegetation, for peatland restoration following in situ oil sands well pad disturbances.
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